首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A recent measurement [1] demonstrates that iridium's Kα2-line, centered at ?63286.96 eV for a cold atom, increases ?+10 eV in energy when it is emitted by a modestly (~17×) ionized plasma. This measurement, enabled by a near-coincident lutetium K-edge filter, agrees well with atomic physics computations. Not understood at the time was a similar measurement with a thulium filter at the ?59370 eV energy of ytterbium's Kβ1 line, which indicated that its photon energy decreases with ionization. The computation reported here shows that the ionization energy shift for Yb's Kβ lines is indeed negative and agrees qualitatively with the measurements. For the K-lines the ionization energy shift may be most interesting in atomic physics, while for the L-lines the ionization energy shift is a promising plasma diagnostic [2].  相似文献   

2.
K-shell X-ray emission from laser-irradiated planar Zn, Ge, Br, and Zr foils was measured at the National Ignition Facility for laser irradiances in the range of 0.6–9.5 × 1015 W/cm2. The incident laser power had a pre-pulse to enhance the laser-to-X-ray conversion efficiency (CE) of a 2–5 ns constant-intensity pulse used as the main laser drive. The measured CE into the 8–16 keV energy band ranged from 0.43% to 2%, while the measured CE into the He-like resonance 1s2–1s2p(1P) and intercombination 1s2–1s2p(3P) transitions, as well as from their 1s2(2s,2p)l–1s2p(2s,2p)l satellite transitions for l = 1, 2, 3, corresponding to the Li-, Be-, and B-like resonances, respectively, ranged from 0.3% to 1.5%. Absolute and relative CE measurements are consistent with X-ray energy scaling of ()?3 to ()?5, where is the X-ray energy. The temporal evolution of the broadband X-ray power was similar to the main laser drive for ablation plasmas having a critical density surface.  相似文献   

3.
4.
A hybrid model combining the detailed level accounting (DLA) and detailed relativistic configuration accounting (DCA) methods is developed to investigate the radiative opacity of gold plasmas with open 4d and 4f shells. Due to the collapse of 4f shells, the configurations with multi-electron excited from 4d and 4f shells are bound and can form a huge number of fine-structure levels and detailed transition lines. A full DLA calculation is time-consuming and intractable and thus a hybrid DLA and DCA method is needed. To obtain accurate radiative opacity, the transitions within the collapsed orbitals and transitions to the relatively lowly excited orbitals are treated by a DLA method, while the transitions to the higher excited orbitals are treated by a DCA method. As an illustrative example, the spectrally resolved, Rosseland and Planck mean opacity of gold plasmas at 100 eV and 0.001 g/cm3 are calculated by using the hybrid model. The present results are compared with those obtained by pure DCA and average atom models, where large discrepancies in the line intensities and positions are found for the strongest 4d–4f transitions due to the collapse of 4f shells indicating the importance of detailed treatment to obtain the accurate opacity.  相似文献   

5.
Recent experiments at the Linac Coherent Light Source (LCLS) X-ray Free-Electron-Laser (FEL) have demonstrated that the standard model used for simulating ionization potential depression (IPD) in a plasma (the Stewart–Pyatt (SP) model, J.C. Stewart and K.D. Pyatt Jr., Astrophysical Journal 144 (1966) 1203) considerably underestimates the degree of IPD in a solid density aluminium plasma at temperatures up to 200 eV. In contrast, good agreement with the experimental data was found by use of a modified Ecker–Kröll (mEK) model (G. Ecker and W. Kröll, Physics of Fluids 6 (1963) 62–69). We present here detailed simulations, using the FLYCHK code, of the predicted spectra from hot dense, hydrogenic and helium-like aluminium plasmas ranging in densities from 0.1 to 4 times solid density, and at temperatures up to 1000 eV. Importantly, we find that the greater IPDs predicted by the mEK model result in the loss of the n = 3 states for the hydrogenic ions for all densities above ≈0.8 times solid density, and for the helium-like ions above ≈0.65 solid density. Therefore, we posit that if the mEK model holds at these higher temperatures, the temperature of solid density highly-charged aluminium plasmas cannot be determined by using spectral features associated with the n = 3 principal quantum number, and propose a re-evaluation of previous experimental data where high densities have been inferred from the spectra, and the SP model has been used.  相似文献   

6.
The last several years have witnessed a surge of activity involving the interaction of clusters with intense ultrashort pulse lasers. The interest in laser–cluster interaction has not been only of academic interest, but also because of the wide variety of potential applications. Clusters can be used as a compact source of X-rays, incoherent as well as coherent, and of fast ions capable of driving a fusion reaction in deuterium plasmas. In one set of xenon cluster experiments, in particular, amplification of ~2.8 Å X-rays has been observed [28]. X-ray amplification in cluster media is a phenomenon of critical importance and may lead to applications such as EUV lithography, EUV and X-ray microscopy, X-ray tomography, and variety of applications in biology and material sciences. However, while amplification of ~2.8 Å X-rays has been documented in experiments, the mechanism for producing it remains to be fully understood. In this talk, a xenon model of laser–cluster interaction dynamics is presented to shed light on the processes responsible for amplification. The focus of this research is on the feasibility of creating population inversions and gain in some of the inner-shell hole state transitions within the M-shell of highly ionized xenon. The model couples a molecular dynamics (MD) treatment of the explosively-driven, non-Maxwellian cluster expansion to a comprehensive multiphoton-radiative ionization dynamic (ID) model including single- and double-hole state production within the Co- and Fe-like ionization stages of xenon. The hole-state dynamics is self-consistently coupled to a detailed valence-state collisional-radiative dynamics of the Ni-, Co-, and Fe-like ionization stages of xenon. In addition, the model includes tunneling ionization rates that confirm an initial condition assumption that Ni-like ground states can be created almost instantaneously, on the order of a femtosecond or less, i.e., at laser intensities larger than 1019 W/cm2, all of the N-shell, n = 4 electrons are striped from a xenon atom in less than a femtosecond. Because of the abundance of these ground states, large numbers of n = 2, inner-shell hole states and large population inversions can be created when the Ni-like ground states are photo- or collisionally ionized. Once the M-shell is entered, tunneling ionization slows down as does collisional ionization due to the fall in ion density as the cluster expands. Moreover, as the cluster density goes down, our combined MD and ID calculations show that so do the calculated population inversions. Thus, our calculations do not support the initial experimental data interpretations in which the measured gains have been associated with double holes in more highly ionized stages of xenon (Xe32+, Xe34+, Xe35+, and Xe37+), which our calculations suggest would require laser intensities in excess of 1.5 × 1020 W/cm2, for a 248 nm, ~250 fs laser pulse focused in a gas of xenon clusters. At laser intensities used in the experiment, such ionization stages would be reached, but only later in time when cluster densities have fallen by several orders of magnitude from their initial values to values where pumping rates are too low and gains cannot be generated.  相似文献   

7.
The formation of shocks in plasmas created by short pulse laser irradiation (λ = 800 nm, I  1 × 1012 W cm?2) of semi-cylindrical cavities of different materials was studied combining visible and soft X-ray laser interferometry with simulations. The plasma rapidly converges near the axis to form a dense bright plasma focus. Later in time a long lasting bow shock is observed to develop outside the cavity, that is shown to arise from the collision of plasmas originating from within the cavity and the surrounding flat walls of the target. The shock is sustained for tens of nanoseconds by the continuous arrival of plasma ablated from the target walls. The plasmas created from the heavier target materials evolve more slowly, resulting in increased shock lifetimes.  相似文献   

8.
A semi-analytic model is developed to estimate continuum lowering in dense plasmas including fluctuations. The model is applied to aluminum and compared with recent experiments at the Linac Coherent Light Source [O. Ciricosta et al., Phys. Rev. Lett. 109 (2012) 065002] that reported the ionization potential depression of K-shell electrons in solid density aluminum at temperatures up to 180 eV. The analysis suggests fluctuations, which are neglected in most continuum lowering models but are essential to describe energy absorption by a system, are sufficiently large to impact the interpretation of the experimental results.  相似文献   

9.
K-shell spectra of solid Al excited by petawatt picosecond laser pulses have been investigated at the Vulcan PW facility. Laser pulses of ultrahigh contrast with an energy of 160 J on the target allow studies of interactions between the laser field and solid state matter at 1020 W/cm2. Intense X-ray emission of KK hollow atoms (atoms without n = 1 electrons) from thin aluminum foils is observed from optical laser plasma for the first time. Specifically for 1.5 μm thin foil targets the hollow atom yield dominates the resonance line emission. It is suggested that the hollow atoms are predominantly excited by the impact of X-ray photons generated by radiation friction to fast electron currents in solid-density plasma due to Thomson scattering and bremsstrahlung in the transverse plasma fields. Numerical simulations of Al hollow atom spectra using the ATOMIC code confirm that the impact of keV photons dominates the atom ionization. Our estimates demonstrate that solid-density plasma generated by relativistic optical laser pulses provide the source of a polychromatic keV range X-ray field of 1018 W/cm2 intensity, and allows the study of excited matter in the radiation-dominated regime. High-resolution X-ray spectroscopy of hollow atom radiation is found to be a powerful tool to study the properties of high-energy density plasma created by intense X-ray radiation.  相似文献   

10.
Over the last several years we have predicted and observed plasmas with an index of refraction greater than 1 in the soft X-ray regime. These plasmas are usually a few times ionized and have ranged from low-Z carbon plasmas to mid-Z tin plasmas. Our main calculational tool has been the average-atom code. We have recently observed C2+ plasmas with an index of refraction greater than 1 at a wavelength of 46.9 nm (26.44 eV). In this paper we compare the average-atom method, AVATOMKG, against two more detailed methods, OPAL and CAK, for calculating the index of refraction for the carbon plasmas and discuss the different approximations used. We present experimental measurements of carbon plasmas that display this anomalous dispersion phenomenon. It is shown that the average-atom calculation is a good approximation when the strongest lines dominate the dispersion. However, when weaker lines make a significant contribution, the more detailed calculations such as OPAL and CAK are essential. During the next decade X-ray free electron lasers and other X-ray sources will be available to probe a wider variety of plasmas at higher densities and shorter wavelengths so understanding the index of refraction in plasmas will be even more essential. With the advent of tunable X-ray lasers the frequency-dependent interferometer measurements of the index of refraction may enable us to determine the absorption coefficients and lineshapes and make detailed comparisons against our atomic physics codes.  相似文献   

11.
We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 μm and mass of a few 10?8 g were irradiated with up to 7 J of laser energy focused to intensities of several 1019 W/cm2. The conversion of laser energy to K-alpha radiation is measured, and high-resolution spectra that allow observation of line shifts are observed, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.  相似文献   

12.
We report on soft X-ray scattering experiments on cryogenic hydrogen and simple metal samples. As a source of intense, ultrashort soft X-ray pulses we have used free-electron laser radiation at 92 eV photon energy from FLASH at DESY, Hamburg. X-ray pulses with energies up to 150 μJ and durations 15–50 fs provide interaction with the sample leading simultaneously to plasma formation and scattering. Experiments exploiting both of these interactions have been carried out, using the same experimental setup. Firstly, recording of soft X-ray inelastic scattering from near-solid density hydrogen plasmas at few electron volt temperatures confirms the feasibility of this diagnostics technique. Secondly, the soft X-ray excitation of few electron volt solid-density plasmas in bulk metal samples could be studied by recording soft X-ray line and continuum emission integrated over emission times from fs to ns.  相似文献   

13.
14.
Opacities of four medium Z element plasmas (iron, nickel, copper and germanium) have been measured at the LULI-2000 facility in similar conditions: temperatures between 15 and 25 eV and densities between 2 and 10 mg/cm3, in a wavelength range (8–18 Å) including the strong 2p–3d structures.Two laser beams from the LULI facility were used in the nanosecond-picosecond configuration. The NANO-2000 beam (at λ = 0.53 μm) heated a gold hohlraum with an energy between 30 and 150 J with a duration of 0.6 ns. Samples covering half a hohlraum hole were thus radiatively heated. The picosecond pulse PICO-2000 beam (at λ = 1.053 μm) has been used to produce a short (about 10 ps) X-ray backlighter in order to reduce time variations of temperatures and densities during the measurement. A crystal high-resolution spectrometer was used as the main diagnostic to record at the same time the non-absorbed and the absorbed backlighter spectra. Radiation temperatures were measured using a broadband spectrometer. 1D and 2D simulations have been performed in order to estimate hydrodynamic plasmas parameters.The measured spectra have been compared with theoretical ones obtained using either the superconfiguration code SCO or the detailed term accounting code HULLAC. These comparisons allow us to check the modeling of the statistical broadening and of the spin-orbit splitting of the 2p–3d transitions and related effects such as the interaction between relativistic subconfigurations belonging to the same non-relativistic configuration.  相似文献   

15.
For plasmas in LTE at moderate or low temperatures (1–50 eV), the statistical approach for calculating emission or absorption spectra may become inaccurate and need improvement to account for the Boltzmann factor in the population of the levels. In this work, corrections to the transition rates are computed by using the moments of emission or absorption zones, which represent the set of levels within a configuration that provide the dominant part of the emissivity (or opacity). Partition functions are also improved by using high-order moments of level energy distributions. Corrections to the statistical models are derived in a non-relativistic framework as a function of these moments, which can be deduced from already published formulas. Numerical comparisons of detailed line-by-line and statistical calculations are presented that clearly illustrate the importance of correcting the models at low temperatures. Thus, these corrections are of great interest for applications such as Warm Dense Matter, LTE photo-absorption experiments where the targets are heated to ∼Te = 20 eV and astrophysical plasmas.  相似文献   

16.
The results of the recent experiments focused on study of x-ray radiation from multicharged plasmas irradiated by relativistic (I > 1019 W/cm2) sub-ps laser pulses on Leopard laser facility at NTF/UNR are presented. These shots were done under different experimental conditions related to laser pulse and contrast. In particular, the duration of the laser pulse was 350 fs or 0.8 ns and the contrast was varied from high (10?7) to moderate (10?5). The thin laser targets (from 4 to 750 μm) made of a broad range of materials (from Teflon to iron and molybden to tungsten and gold) were utilized. Using the x-ray diagnostics including the high-precision spectrometer with resolution R ~ 3000 and a survey spectrometer, we have observed unique spectral features that are illustrated in this paper. Specifically, the observed L-shell spectra for Fe targets subject to high intensity lasers (~1019 W/cm2) indicate electron beams, while at lower intensities (~1016 W/cm2) or for Cu targets there is much less evidence for an electron beam. In addition, K-shell Mg features with dielectronic satellites from high-Rydberg states, and the new K-shell F features with dielectronic satellites including exotic transitions from hollow ions are highlighted.  相似文献   

17.
Shock waves generated by temporally shaped laser ablation compressed and heated Al to ρ = 11 ± 5 g/cm3 and 20 ± 2 eV. The inferred density and temperature demonstrate that highly compressed, Fermi-degenerate plasma can be created by tuning the temporal pulse shape of the laser drive intensity. The density and temperature of these plastic-tamped Al plasmas in the warm dense matter regime were diagnosed using the Stark-broadened, Al 1s–2p absorption spectral line shapes. These observations represent the forefront of opacity measurements for warm dense matter and are important for high energy density physics and inertial confinement fusion.  相似文献   

18.
A circular water jet (Re = 1.6 × 105; We = 8.8 × 103) plunging at shallow angles (θ  12.5°) into a quiescent pool is investigated computationally and experimentally. A surprising finding from the work is that cavities, of the order of jet diameter, are formed periodically in the impact location, even though the impinging flow is smooth and completely devoid of such a periodicity. Computational prediction of these frequencies was compared with experimental findings, yielding excellent agreement. The region in the vicinity of the impact is characterized by strong churning due to splashing and formation of air cavities. Measured velocity profiles indicate a concentration of momentum beneath the free surface slightly beyond the impact location (X/Dj  14), with a subsequent shift towards the free surface further downstream of this point (X/Dj  30). This shift is due primarily to the action of buoyancy on the cavity/bubble population. Comparisons of the mean velocity profile between simulations and experiments are performed, yielding good agreement, with the exception of the relatively small churning flow region. Further downstream (X/Dj  40), the flow develops mostly due to diffusion and the location of peak velocity coincides with the free surface. In this region, the free surface acts as an adiabatic boundary and restricts momentum diffusion, causing the peak velocity to occur at the free surface.  相似文献   

19.
A systematic study has been carried out on the changes in the L-shell absorption structure of niobium as a result of changing the population of the n = 3 shell from full to having vacancies in the 3d level. The niobium spectra were measured in the 2–3 keV frequency range, which spanned the 2p-nd transitions where 3 ≤ n ≤ 11. In addition to the detailed structure in these arrays the data also show 2s-4p and 2p-4s transitions and the bound-free L edge. The frequencies and widths of transition arrays, transmission between arrays, and the absorption due to the bound-free edge, can be seen in the data. The sample conditions were found from a combination of two-dimensional radiation-hydrodynamics calculations using the AWE NYM code and flux measurements using X-ray diodes, measurements of 1s-2p absorption spectra in aluminium and mixed aluminium/niobium samples. The electron temperature error, inferred from the modelling, is ±2 eV, with a density error of 30%. The data were recorded over the temperature range from 28 to 45 eV and show marked changes in the spectra over this range.The data were compared to spectra predicted by the AWE CASSANDRA [B.J.B. Crowley, J.W.O. Harris, J. Quant. Spectrosc. Radiat. Transfer 71 (2000) p. 257] opacity code. The calculated spectra were able to reproduce the measurements reasonably well. However, there are some differences in line positions that cannot be accounted for by gradients and there are differences in the array structure in the prediction and the measurements, with additional structure predicted but not seen in the measurements. There is also lower transmission on the blue side of the 2p-3d transition arrays compared to prediction.  相似文献   

20.
Spatially-resolved time-integrated X-ray spectra of laser produced samarium plasma were recorded, in the spectral range from 7 to 10 Å. The spectrum of samarium is characterized by the prominent pattern of transitions 3d – nf (n = 4–7) belonging to Co-like (Sm35+), Ni-like (Sm34+) and Cu-like (Sm33+) ions. Spectral lines of Mn-like (Sm37+) to Zn-like (Sm32+) were identified. The appearance of these ionization stages as a function of distance from the target was measured. Transfer of the dominant ion stages to lower stages with increasing distance from the original target surface was demonstrated, probably indicating dielectronic recombination. The Hebrew University Lawrence Livermore Atomic Code was used to generate emission spectra for comparison with the experimental ones.A radiation-hydrodynamics code coupled to three non-Local Thermal Equilibrium ionization and equation of state models with different approaches for dielectronic processes was used to model the plasma. The simulated plasma ionization and electron densities and temperatures were found to be consistent with the experimental results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号