首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
涡激振动是造成海洋立管疲劳损伤的重要因素, 抑制振动能够保障结构安全, 延长使用寿命. 多数涡激振动抑制方法基于干扰流场的方式, 但在复杂环境条件下, 仅通过干扰流场对振动的抑制效果有限. 因此, 从结构层面考虑开展了海洋立管涡激振动抑制研究. 基于能量传递的理论, 阐述了立管涡激振动过程中的能量传递规律. 振动能量以行波形式由能量输入区传播至能量耗散区, 主要在能量耗散区被消耗. 通过局部增大能量耗散区的阻尼, 增加振动能量在传播过程中的消耗, 实现涡激振动抑制. 为了求解立管涡激振动响应, 构建了尾流振子预报模型, 并根据实验结果验证了理论模型的可靠性. 基于理论计算得到的能量系数, 判定立管涡激振动的能量输入区和能量耗散区. 通过对比立管增大阻尼前后的响应, 分析了涡激振动抑制效果. 研究结果表明: 在能量输入区增大阻尼对涡激振动的抑制效果并不显著; 在能量耗散区增大阻尼使能量衰减系数达到临界值之后, 能够显著降低立管上部和底部的涡激振动位移; 当能量衰减系数超过临界值后, 继续增大耗散区阻尼对涡激振动抑制效果的提升不明显.   相似文献   

2.
Alfosail  Feras K.  Nayfeh  Ali H.  Younis  Mohammad I. 《Meccanica》2017,52(4-5):1175-1187
Meccanica - We use the method of matched asymptotic expansion to develop an analytic solution to the static problem of clamped–clamped inclined risers conveying fluid. The inclined riser is...  相似文献   

3.
An experimental validation of the suitability of reduction methods for studying nonlinear vibrations of distributed-parameter systems is attempted. Nonlinear planar vibrations of a clamped-clamped buckled beam about its first post-buckling configuration are analyzed. The case of primary resonance of the nth mode of the beam, when no internal resonances involving this mode are active, is investigated. Approximate solutions are obtained by applying the method of multiple scales to a single-mode model discretized via the Galerkin procedure and by directly attacking the governing integro-partial-differential equation and boundary conditions with the method of multiple scales. Frequency-response curves for the case of primary resonance of the first mode are generated using both approaches for several buckling levels and are contrasted with experimentally obtained frequency-response curves for two test beams. For high buckling levels above the first crossover point of the beam, the computed frequency-response curves are qualitatively as well as quantitatively different. The experimentally obtained frequency-response curves for the directly excited first mode are in agreement with those obtained with the direct approach and in disagreement with those obtained with the single-mode discretization approach.  相似文献   

4.
The exact mode shapes of linear vibrations of a shallow shell rectangular in the horizontal projection with two freely supported opposite edges are obtained. These shapes are used to construct a discretemodel of vibrations of a shallow shell in geometrically nonlinear deformation. The harmonic balance method is used to study the free and forced nonlinear vibrations under internal resonance. The Lyapunov stability of the obtained periodic vibrations is analyzed.  相似文献   

5.
内孤立波是一种发生在水面以下的在世界各个海域广泛存在的大幅波浪, 其剧烈的波面起伏所携带的巨大能量对以海洋立管为代表的海洋结构物产生严重威胁, 分析其传播演化过程的流场特征及立管在内孤立波作用下的动力响应规律对于海洋立管的设计具有重要意义. 本文基于分层流体的非线性势流理论, 采用高效率的多域边界单元法, 建立了内孤立波流场分析计算的数值模型, 可以实时获得内孤立波的流场特征. 根据获得的流场信息, 采用莫里森方程计算内孤立波对海洋立管作用的载荷分布. 将内孤立波流场非线性势流计算模型与动力学有限元模型结合来求解内孤立波作用下海洋立管的动力响应特征, 讨论了内孤立波参数、顶张力大小以及内部流体密度对立管动力响应的影响. 发现随着内孤立波波幅的增大, 海洋立管的流向位移和应力明显增大. 由于上层流体速度明显大于下层, 且在所研究问题中拖曳力远大于惯性力, 因此管道顺流向的最大位移发生在上层区域. 顶张力通过改变几何刚度阵的值进而对立管的响应产生明显影响. 对于弱约束立管, 内部流体的密度对管道的流向位移影响较小.   相似文献   

6.
The free vibrations of flexible shallow shells with complex planform are studied. To analyze the natural frequencies and modes of linear vibrations, the R-function and Rayleigh–Ritz methods are used. A discrete model is obtained using the Bubnov–Galerkin method. The nonlinear vibrations are studied by combining the nonlinear normal mode method and the multiple-scales method. Skeleton curves of natural vibrations are drawn  相似文献   

7.
L. Dai  L. Sun  C. Chen 《Nonlinear dynamics》2014,77(4):1677-1692
Microbeams are widely seen in micro-electro-mechanical systems and their engineering applications. An active control strategy based on the fuzzy sliding mode control is developed in this research for controlling and stabilizing the nonlinear vibrations of a micro-electro-mechanical beam. An Euler-Bernoulli beam with a fixed-fixed boundary is employed to represent the microbeam, and the geometric nonlinearity of the beam and loading nonlinearity from the electrostatic force are considered. The governing equation of the microbeam is established and transformed into a multi-dimensional dynamic system with the third-order Galerkin method. A stability analysis is provided to show the necessity of the derived multi-dimensional dynamic system, and a chaotic motion is discovered. Then, a control approach is proposed, including a control strategy and a two-phase control method. For describing the application of the control approach developed, control of a chaotic motion of the microbeam is presented. The effectiveness of the active control approach is demonstrated via controlling and stabilizing the nonlinear vibration of the microbeam.  相似文献   

8.
In offshore engineering long slender risers are simultaneously subjected to both axial and transverse excitations. The axial load is the fluctuating top tension which is induced by the floater’s heave motion, while the transverse excitation comes from environmental loads such as waves. As the time-varying axial load may trigger classical parametric resonance, dynamic analysis of a deepwater riser with combined axial and transverse excitations becomes more complex. In this study, to fully capture the coupling effect between the planar axial and transverse vibrations, the nonlinear coupled equations of a riser’s dynamic motion are formulated and then solved by the central difference method in the time domain. For comparison, numerical simulations are carried out for both linear and nonlinear models. The results show that the transverse displacements predicted by both models are similar to each other when only the random transverse excitation is applied. However, when the combined axial dynamic tension and transverse wave forces are both considered, the linear model underestimates the response because it ignores the coupling effect. Thus the coupled model is more appropriate for deep water. It is also found that the axial excitation can significantly increase the riser’s transverse response and hence the bending stress, especially for cases when the time-varying tension is located at the classical parametric resonance region. Such time-varying effects should be taken into account in fatigue safety assessment.  相似文献   

9.
段金龙  周济福  王旭  陈科 《力学学报》2021,53(7):1876-1884
立管是海洋工程中输送油气或其他矿产资源的必备结构, 外部洋流引起的立管涡激振动影响着立管的疲劳寿命, 危害深海资源开发. 本文基于欧拉?伯努利梁方程, 结合半经验时域水动力模型, 建立剪切流与内流耦合作用下海洋立管涡激振动预报模型, 运用有限元方法和Newmark-β逐步积分法求解方程, 首先将数值模拟结果与实验数据进行对比, 验证模型正确性. 然后, 运用此模型, 对剪切流作用下含内流的顶张立管在不同内流速度和密度下的横向涡激振动响应特性进行研究, 主要分析了立管的横向振动模态、振动频率以及均方根位移等涡激振动参数随内流速度和密度等参数的变化规律. 结果表明, 在剪切流场中, 含内流海洋立管在横向上表现出多模态多频率的涡激振动;立管横向振动的最大均方根位移随内流速度和密度的增大而增大, 特别是当内流速度较大时, 横向最大均方根位移增大明显;立管横向振动的主导频率随内流速度和密度的增大而减小, 并且内流密度的增大同样会引起模态转换和频率转换.   相似文献   

10.
The nonlinear dynamic behavior of flexible beams is described by nonlinear partial differential equations. The beam model accounts for the tension of the neutral axis under vibrations. The Bubnov–Galerkin method is used to derive a system of ordinary differential equations. The system is solved by the multiple-scale method. A system of modulation equations is analyzed  相似文献   

11.
On the dynamics of tapping mode atomic force microscope probes   总被引:1,自引:0,他引:1  
A?mathematical model is developed to investigate the grazing dynamics of tapping mode atomic force microscopes (AFM) subjected to a base harmonic excitation. A?multimode Galerkin approximation is utilized to discretize the nonlinear partial differential equation of motion governing the cantilever response and associated boundary conditions and obtain a set of nonlinearly coupled ordinary differential equations governing the time evolution of the system dynamics. A?comprehensive numerical analysis is performed for a wide range of the excitation amplitude and frequency. The tip oscillations are examined using nonlinear dynamic tools through several examples. The non-smoothness in the tip/sample interaction model is treated rigorously. A?higher-mode Galerkin analysis indicates that period doubling bifurcations and chaotic vibrations are possible in tapping mode microscopy for certain operating parameters. It is also found that a single-mode Galerkin approximation, which accurately predicts the tip nonlinear responses far from the sample, is not adequate for predicting all of the nonlinear phenomena exhibited by an AFM, such as grazing bifurcations, and leads to both quantitative and qualitative errors.  相似文献   

12.
The nonlinear parametric vibrations of cylindrical shell are described by the Donnell–Mushtari–Vlasov equations. The motions are represented as a mode expansion. Discretization is performed using the Bubnov–Galerkin method. The describing-function method is used to study traveling waves and nonlinear normal modes in systems with and without dissipation  相似文献   

13.
This paper is first of the two papers dealing with analytical investigation of resonant multi-modal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of horizontal/inclined cables. Part I deals with theoretical formulation and validation of the general cable model. Approximate nonlinear partial differential equations of 3-D coupled motion of small sagged cables – which account for both spatio-temporal variation of nonlinear dynamic tension and system asymmetry due to inclined sagged configurations – are presented. A multi-dimensional Galerkin expansion of the solution of nonplanar/planar motion is performed, yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically studying the behavior of horizontal/inclined cables in Part II [25], a second-order asymptotic analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On accounting for higher-order effects of quadratic/cubic nonlinearities, approximate closed-form solutions of nonlinear amplitudes, frequencies and dynamic configurations of resonant nonlinear normal modes reveal the dependence of cable response on resonant/nonresonant modal contributions. Depending on simplifying kinematic modeling and assigned system parameters, approximate horizontal/inclined cable models are thoroughly validated by numerically evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are discussed for horizontal cables, showing some meaningful effects due to kinematic condensation.  相似文献   

14.
研究梁产生主共振情形下索梁组合结构的1∶1内共振问题。基于斜拉桥中的索梁组合结构模型,忽略索梁纵向惯性力的影响,考虑弯曲刚度、几何非线性及垂度等因素,利用索梁连接处的变形协调条件,采用Hamilton变分原理建立了索梁结构面内耦合非线性偏微分方程,运用Galerkin离散和多尺度法研究了梁主共振情形下索梁的1∶1相互作用问题,获得了内共振时的平均方程和分叉响应曲线方程。以某斜拉桥中索梁结构参数为例,研究了内共振时索梁结构之间的相互影响及时程曲线。结果表明,索容易出现共振情形,并呈现出较强的非线性特点;梁振动对索振动影响显著,索振动对梁振动影响较小;索梁内共振时能量相互交换,索梁振幅呈现此消彼长的现象。  相似文献   

15.
Analytical results are presented on chaotic vibrations of a post-buckled L-shaped beam with an axial constraint. The L-shaped beam is composed of two beams which are a horizontal beam and a vertical beam. The two beams are firmly connected with a right angle at each end. The beams joint with the right angle is attached to a linear spring. The other ends are firmly clamped for displacement. The L-shaped beam is compressed horizontally via the spring at the beams joint. The L-shaped beam deforms to a post-buckled configuration. Boundary conditions are required with geometrical continuity of displacements and dynamical equilibrium with axial force, bending moment, and share force, respectively. In the analysis, the mode shape function proposed by the senior author is introduced. The coefficients of the mode shape function are fixed to satisfy boundary conditions of displacements and linearized equilibrium conditions of force and moment. Assuming responses of the beam with the sum of the mode shape function, then applying the modified Galerkin procedure to the governing equations, a set of nonlinear ordinary differential equations is obtained in a multiple-degree-of-freedom system. Nonlinear responses of the beam are calculated under periodic lateral acceleration. Nonlinear frequency response curves are computed with the harmonic balance method in a wide range of excitation frequency. Chaotic vibrations are obtained with the numerical integration in a specific frequency region. The chaotic responses are investigated with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. Applying the procedure of the proper orthogonal decomposition to the chaotic responses, contribution of vibration modes to the chaotic responses is confirmed. The following results have been found: The chaotic responses are generated with the ultra-subharmonic resonant response of the two-third order corresponding to the lowest mode of vibration. The Lyapunov dimension shows that three modes of vibration contribute to the chaotic vibrations predominantly. The results of proper orthogonal decomposition confirm that the three modes contribute to the chaos, which are the first, second, and third modes of vibration. Moreover, the results of the proper orthogonal decomposition are evaluated with velocity which is equivalent to kinetic energy. Higher modes of vibration show larger contribution to the chaotic responses, even though the first mode of vibration has the largest contribution ratio.  相似文献   

16.
Vibration of a variable cross-section beam   总被引:4,自引:0,他引:4  
Vibration of an isotropic beam which has a variable cross-section is investigated. Governing equation is reduced to an ordinary differential equation in spatial coordinate for a family of cross-section geometries with exponentially varying width. Analytical solutions of the vibration of the beam are obtained for three different types of boundary conditions associated with simply supported, clamped and free ends. Natural frequencies and mode shapes are determined for each set of boundary conditions. Results show that the non-uniformity in the cross-section influences the natural frequencies and the mode shapes. Amplitude of vibrations is increased for widening beams while it is decreased for narrowing beams.  相似文献   

17.
The dynamic characteristics of a beam–cable coupled system are investigated using an improved Chebyshev spectral element method in order to observe the effects of adding cables on the beam. The system is modeled as a double Timoshenko beam system interconnected by discrete springs. Utilizing Chebyshev series expansion and meshing the system according to the locations of its connections,numerical results of the natural frequencies and mode shapes are obtained using only a few elements, and the results are validated by comparing them with the results of a finiteelement method. Then the effects of the cable parameters and layout of connections on the natural frequencies and mode shapes of a fixed-pinned beam are studied. The results show that the modes of a beam–cable coupled system can be classified into two types, beam mode and cable mode, according to the dominant deformation. To avoid undesirable vibrations of the cable, its parameters should be controlled in a reasonable range, or the layout of the connections should be optimized.  相似文献   

18.
This study intends to investigate the dynamic behavior of a nonlinear elastic beam of large deflection. Using the Galerkin principle, the dynamic nonlinear governing equations are derived based on the single and double mode methods. Two different kinds of nonlinear dynamic equations are obtained with the variation of the dimension and loading parameters. The chaotic critical conditions are given by Melnikov function method for the single mode model. The chaotic motion is investigated and the comparison between single and double mode models is carried out. The results show that the single mode method usually used may lead to incorrect conclusions in some conditions, and instead the double mode or higher order mode method should be used. Finally, the applicable condition of the single mode method is analyzed.  相似文献   

19.
Effect of gravity on the vibration of vertical cantilevers   总被引:1,自引:0,他引:1  
The free vibration of a vertically-oriented, thin, prismatic cantilever is influenced by weight. That is, the natural frequencies (and to a lesser extent, mode shapes) are affected by the application of a linearly varying axial load. A beam with an “upward” orientation, i.e., with the free end above the clamped end, will experience a de-stiffening effect, up to the point of self-weight buckling (at zero effective stiffness). A beam in a “downward” orientation will be stiffened by the weight of the beam. This technical note describes some simple experiments on very slender strips and their (vertical) orientation and shows a close correlation with theory.  相似文献   

20.
The flexural vibration of a symmetrically laminated composite cantilever beam carrying a sliding mass under harmonic base excitations is investigated. An internally mounted oscillator constrained to move along the beam is employed in order to fulfill a multi-task that consists of both attenuating the beam vibrations in a resonance status and harvesting this residual energy as a complementary subtask. The set of nonlinear partial differential equations of motion derived by Hamilton’s principle are reduced and semi-analytically solved by the successive application of Galerkin’s and the multiple-scales perturbation methods. It is shown that by properly tuning the natural frequencies of the system, internal resonance condition can be achieved. Stability of fixed points and bifurcation of steady-state solutions are studied for internal and external resonances status. It results that transfer of energy or modal saturation phenomenon occurs between vibrational modes of the beam and the sliding mass motion through fulfilling an internal resonance condition. This study also reveals that absorbers can be successfully implemented inside structures without affecting their functionality and encumbering additional space but can also be designed to convert transverse vibrations into internal longitudinal oscillations exploitable in a straightforward manner to produce electrical energy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号