首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this article we extend the analytical solution for viscous flow in an equilateral triangular tube to irregular triangular tubes. The validity of the solution is examined and proved by comparison with the numerical simulation results. With the new extension of the equations, the average velocity of viscous flow through an arbitrary triangular tube can be readily calculated as a function of inscribed radius of the triangular cross-section of the tube, and the volumetric flow rate is computed as a function of inscribed radius and the cross- sectional area. To illustrate the advantages in using an arbitrary triangular tube for modelling a porous medium, we present examples of tube bundle models, which give a wide range of variation in porosity and permeability with a fixed pore size distribution, by using various combinations of three types of triangular tubes.  相似文献   

2.
We present the results of lattice Boltzmann (LB) simulations for the planar-flow of viscoplastic fluids through complex flow channels. In this study, the Bingham and Casson model fluids are covered as viscoplastic fluid. The Papanastasiou (modified Bingham) model and the modified Casson model are employed in our LB simulations. The Bingham number is an essential physical parameter when considering viscoplastic fluid flows and the modified Bingham number is proposed for modified viscoplastic models. When the value of the modified Bingham number agrees with that of the “normal” Bingham number, viscoplastic fluid flows formulated by modified viscoplastic models strictly reproduce the flow behavior of the ideal viscoplastic fluids. LB simulations are extensively performed for viscoplastic fluid flows through complex flow channels with rectangular and circular obstacles. It is shown that the LB method (LBM) allows us to successfully compute the flow behavior of viscoplastic fluids in various complicated-flow channels with rectangular and circular obstacles. For even low Re and high Bn numbers corresponding to plastic-property dominant condition, it is clearly manifested that the viscosity for both the viscoplastic fluids is largely decreased around solid obstacles. Also, it is shown that the viscosity profile is quite different between both the viscoplastic fluids due to the inherent nature of the models. The viscosity of the Bingham fluid sharply drops down close to the plastic viscosity, whereas the viscosity of the Casson fluid does not rapidly fall. From this study, it is demonstrated that the LBM can be also an effective methodology for computing viscoplastic fluid flows through complex channels including circular obstacles.  相似文献   

3.
The performance of flat fins for tube-fin heat exchangers has been analyzed for both inline and staggered arrangement of tubes. In earlier published studies, regular square and equilateral triangular array tube layouts were considered. No such restriction is put in the present study. The analysis has been done by a semi-analytical technique where the boundary condition at the fin edge is discretely satisfied at a large number of points by a method of collocation. It has also been demonstrated that the approximate results obtained by the sector method closely agree with the prediction of semi-analytical technique. Finally, a generalized scheme of optimization based on Lagrange multiplier technique has been suggested which shows that irrespective of the volume and thickness of the fins, square and equilateral triangular array of tubes are the optimum layout for inline and staggered arrangements, respectively. This result was known so far only intuitively. The optimum dimensions for flat fins for other layout of tubes have also been obtained specifying the ratio of longitudinal to transverse tube pitch.  相似文献   

4.
The shallow flow of a viscoplastic fluid on a plane slope is investigated. The material constitutive law may include two plasticity (flow/no-flow) criteria: Von-Mises (Bingham fluid) and Drucker–Prager (Mohr–Coulomb). Coulomb frictional conditions on the bottom are included, which implies that the shear stresses are small and the extensional and in-plane shear stress becomes important. A stress analysis is used to deduce a Saint-Venant type asymptotic model for small thickness aspect ratio. The 2D (asymptotic) constitutive law, which relates the average plane stresses to the horizontal rate of deformation, is obtained from the initial (3D) viscoplastic model.The “safety factor” (limit load) is introduced to model the link between the yield limit (material resistance) and the external forces distribution which could generate or not the shallow flow of the viscoplastic fluid. The DVDS method, developed in [I.R. Ionescu, E. Oudet, Discontinuous velocity domain splitting method in limit load analysis, Int. J. Solids Struct., doi:10.1016/j.ijsolstr.2010.02.012], is used to evaluate the safety factor and to find the onset of an avalanche flow.A mixed finite element and finite volume strategy is developed. Specifically, the variational inequality for the velocity field is discretized using the finite element method while a finite volume method is adopted for the hyperbolic equation related to the thickness variable. To solve the velocity problem, a decomposition–coordination formulation coupled with the augmented lagrangian method, is adapted here for the asymptotic model. The finite volume method makes use of an upwind strategy in the choice of the flux.Several boundary value problems, modeling shallow dense avalanches, for different visoplastic laws are selected to illustrate the predictive capabilities of the model.  相似文献   

5.
The near field mean flow and turbulence characteristics of a turbulent jet of air issuing from a sharp-edged isosceles triangular orifice into still air surroundings have been examined experimentally using hot-wire anemometry and a pitot-static tube. For comparison, some measurements were made in an equilateral triangular free jet and in a round free air jet, both of which also issued from sharp-edged orifices. The Reynolds number, based on the orifice equivalent diameter, was 1.84×105 in each jet. The three components of the mean velocity vector, the Reynolds normal and primary shear stresses, the one-dimensional energy spectra of the streamwise fluctuating velocity signals and the mean static pressure were measured. The mean streamwise vorticity, the half-velocity widths, the turbulence kinetic energy and the local shear in the mean streamwise velocity were obtained from the measured data. It was found that near field mixing in the equilateral triangular jet is faster than in the isosceles triangular and round jets. The mean streamwise vorticity field was found to be dominated by counter-rotating pairs of vortices, which influenced mixing and entrainment in the isosceles triangular jet. The one-dimensional energy spectra results indicated the presence of coherent structures in the near field of all three jets and that the equilateral triangular jet was more energetic than the isosceles triangular and round jets.  相似文献   

6.
We consider the Newtonian Poiseuille flow in a tube whose cross-section is an equilateral triangle. It is assumed that boundary slip occurs only above a critical value of the wall shear stress, namely the slip yield stress. It turns out that there are three flow regimes defined by two critical values of the pressure gradient. Below the first critical value, the fluid sticks everywhere and the classical no-slip solution is recovered. In an intermediate regime the fluid slips only around the middle of each boundary side and the flow problem is not amenable to analytical solution. Above the second critical pressure gradient non-uniform slip occurs everywhere at the wall. An analytical solution is derived for this case and the results are discussed.  相似文献   

7.
The equations for the nonhomogeneous incompressible Herschel–Bulkley fluid are considered and existence of a weak solution is proved for a boundary-value problem which describes three-dimensional flows between two eccentric cylinders when in each two-dimensional cross-section annulus the flow characteristics are the same. The rheology of such a fluid is defined by a yield stress τ* and a discontinuous stress-strain law. A fluid volume stiffens if its local stresses do not exceed τ*, and a fluid behaves like a nonlinear fluid otherwise. The flow equations are formulated in the stress–velocity–density–pressure setting. Our approach is different from that of Duvaut–Lions developed for the classical Bingham viscoplastic fluids. We do not apply the variational inequality but make use of an approximation of the generalized Bingham fluid by a non-Newtonian fluid with a continuous constitutive law.  相似文献   

8.
The augmented Lagrangian/Uzawa method has been used to study benchmark one-dimensional cessation flow problems of a Bingham fluid, such as the plane Couette flow, and the plane, round, and annular Poiseuille flows. The calculated stopping times agree well with available theoretical upper bounds for the whole range of Bingham numbers and with previous numerical results. The applied method allows for easy determination of the yielded and unyielded regions. The evolution of the rigid zones in these unsteady flows is presented. It is demonstrated that the appearance of an unyielded zone near the wall occurs for any non-zero Bingham number not only in the case of a round tube but also in the case of an annular tube of small radii ratio. The advantages of using the present method instead of regularizing the constitutive equation are also discussed.  相似文献   

9.
A finite element formulation for the steady laminar flow of an incompressible fluid with microstructure has been developed. The particular fluids considered are commonly known as micropolar fluids, in which case suspended particulate microstructures are modelled by an ‘extended’ continuum formulation. The particle microspin is a new kinematic variable which is independent of the classical vorticity vector and thereby allows relative rotation between particles and the surrounding fluid. This formulation also gives rise to couple stresses in addition to classical force or traction stresses. The finite element formulation utilizes a variational approach and imposes conservation of mass through a penalty function. A general boundary condition for microspin has been incorporated whereby microspin at a solid boundary is constrained to be proportional to the fluid vorticity. The proportionality constant in this case can vary from zero to unity. Sample solutions are presented for fully developed flow through a straight tube and compared with an analytical solution. Results are also generated for flow through a constricted tube and compared with a Newtonian fluid solution.  相似文献   

10.
In this paper, an unsteady flow of a viscoplastic fluid for simple shear flow geometry is solved numerically using two regularizing functions to overcome the discontinuity for zero shear rate of the Bingham constitutive law. The adopted models are the well-known Papanastasiou relation and one based on the error function. The numerical results are compared with the analytical solution of the same problem obtained by Sekimoto (J Non-Newton Fluid Mech 39:107–113, 1991). The analysis of the results emphasizes that the errors are much smaller in the yielded than in the unyielded region. The models approximate closer the ideal Bingham model as the regularization parameters increase. The differences between the models tend to vanish as the regularization parameters are at least greater than 105.  相似文献   

11.
This numerical study focuses on regularised Bingham-type and viscoelastoplastic fluids, performing simulations for 4:1:4 contraction?Cexpansion flow with a hybrid finite element?Cfinite volume subcell scheme. The work explores the viscoplastic regime, via the Bingham?CPapanastasiou model, and extends this into the viscoelastoplastic regime through the Papanastasiou?COldroyd model. Our findings reveal the significant impact that elevation has in yield stress parameters, and in sharpening of the stress singularity from that of the Oldroyd/Newtonian models to the ideal Bingham form. Such aspects are covered in field response via vortex behaviour, pressure-drops, stress field structures and yielded?Cunyielded zones. With rising yield stress parameters, vortex trends reflect suppression in both upstream and downstream vortices. Viscoelastoplasticity, with its additional elasticity properties, tends to disturb upstream?Cdownstream vortex symmetry balance, with knock-on effects according to solvent-fraction and level of elasticity. Yield fronts are traced with increasing yield stress influences, revealing locations where relatively unyielded material aggregates. Analysis of pressure drop data reveals significant increases in the viscoplastic Bingham?CPapanastasiou case, O (12%) above the equivalent Newtonian fluid, that are reduced to 8% total contribution increase in the viscoelastoplastic Papanastasiou?COldroyd case. This may be argued to be a consequence of strengthening in first normal stress effects.  相似文献   

12.
The Euler–Lagrange variational principle is used to obtain analytical and numerical flow relations in cylindrical tubes. The method is based on minimizing the total stress in theflow duct using the fluid constitutive relation between stress and rate of strain. Newtonian and non-Newtonian fluid models, which include power law, Bingham, Herschel–Bulkley, Carreau, and Cross, are used for demonstration.  相似文献   

13.
The displacement of viscoplastic liquids in capillary tubes by gas injection is examined. The viscoplasticity alters the flow kinematics and changes dramatically the amount of mass left attached at the tube wall as compared to the Newtonian case, studied experimentally by G.I. Taylor in 1961 [G.I. Taylor, Deposition of a viscous fluid on the wall of a tube, J. Fluid Mech. 10 (1961) 161–165]. Experiments with Carbopol aqueous solutions were performed for different flow rates. A recently proposed viscosity function for viscoplastic liquids was fitted to the rheological data of the Carbopol solutions. A new dimensionless rheological property – the jump number – arises in the dimensionless version of this viscosity function. The results show the effect of the viscoplastic character of the liquid on the free surface shape and on the thickness of the film of liquid left attached to the wall. This thickness decreases with the jump number and increases with the flow rate. It is also observed that there is a critical dimensionless flow rate below which the displacement is apparently perfect, i.e. there is no observable liquid left attached to the wall. This behavior is shown to be directly related to the fully developed flow far ahead the air–liquid interface.  相似文献   

14.
The equations of motion of a continuum in a thin layer are derived for a given functional dependence of the stress tensor on the strain rate tensor. The general problem of viscoplastic flow is considered in the thin-layer approximation for boundary surface material points travelling in the lateral direction in a predetermined fashion.The projections of the continuum point velocity, pressure, flow rate through a cross-section of the channel, and the power of external forces are expressed as functions of the boundary deformation law. The problem of determining the channel boundary deformation law is formulated for a given boundary pressure distribution. The expressions for the continuum flow rate and pressure and the power of external forces written as functionals of the channel width allow formulation of the problems of controlling viscoplastic flows in thin layers and optimizing the processes.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 23–31, March–April, 1996.  相似文献   

15.
Numerical simulations have been used to study the flow of a Bingham viscoplastic fluid around a circular cylinder in an infinite medium with negligible inertia effects. Papanastasiou's regularisation technique has been adopted to approximate the model. The case corresponding to preponderant plasticity effects has been particularly studied and convergence of the solutions examined in detail. The flow kinematics and stresses have been determined. The rigid zones have been identified and characterised. At large Oldroyd numbers, when plasticity effects become preponderant, a viscoplastic boundary layer appears around the cylinder. The characteristics of this viscoplastic boundary layer are quantified. The results are compared with existing theoretical results, concerning particularly the predictions of the viscoplastic boundary layer theory and the plasticity theory.  相似文献   

16.
This study discusses the experimental result of the viscoplastic response and col- lapse of sharp-notched 316L stainless steel tubes with different notched depths subjected to cyclic bending. The tube bending machine and curvature-ovalization measurement apparatus were used for conducting the symmetric curvature-controlled cyclic bending. To highlight the viscoplastic behavior, three different curvature-rates, 0.0035, 0.035 and 0.35 m-1s-1, were controlled. Ob- servations of a certain curvature-rate reveal that five almost parallel lines corresponding to five different notch-depth (0.2, 0.4, 0.6, 0.8 and 1.0 mm) tubes were presented in the experimental relationship between the cyclic controlled curvature and the number of cycles needed to pro- duce buckling on a log-log scale. However, the slopes for the three different curvature-rates are different. An empirical formulation was proposed to simulate the aforementioned relationship. When comparing with the experimental findings, the simulation was in good agreement with the experimental data.  相似文献   

17.
The flow of non-Newtonian fluids in annular geometries is an important problem, especially for the extrusion of polymeric melts and suspensions and for oil and gas exploration. Here, an analytical solution of the equation of motion for the axial flow of an incompressible viscoplastic fluid (represented by the Hershel–Bulkley equation) in a long concentric annulus under isothermal, fully developed, and creeping conditions and subject to true or apparent wall slip is provided. The simplifications of the analytical model for Hershel–Bulkley fluid subject to wall slip also provide the analytical solutions for the axial annular flows of Bingham plastic, power-law, and Newtonian fluids with and without wall slip at one or both surfaces of the annulus.  相似文献   

18.
This study develops a general theory for small-deformation viscoplasticity based on a system of microforces consistent with its own balance; a mechanical version of the second law that includes, via the microforces, work performed during viscoplastic flow; a constitutive theory that allows for dependences on plastic strain-gradients. The microforce balance and the constitutive equations—suitably restricted by the second law—are shown to be together equivalent to a flow rule that accounts for variations in free energy due to flow. When this energy is the sum of an elastic strain energy and a defect energy quadratic, isotropic, and positive definite in the plastic-strain gradients, the flow rule takes the form of a second-order parabolic PDE for the plastic strain coupled to the usual PDE arising from the standard macroscopic force balance and the elastic stress-strain relation. The classical macroscopic boundary conditions are supplemented by nonstandard boundary conditions associated with viscoplastic flow. As an aid to solution, a weak (virtual power) formulation of the nonlocal flow rule is derived.  相似文献   

19.
An isothermal steady rarefied gas flow in a long channel (tube) of elliptical or rectangular cross-section under the action of a given pressure gradient (Poiseuille flow) is studied on the basis of the Bhatnagar-Gross-Krook model. The solution is obtained using a conservative higher-order method. The velocity field in a channel cross-section is investigated as a function of the rarefaction degree and the cross-section geometry parameters. The main calculated function is the gas flow rate through the tube. The solutions obtained are compared with the available results.  相似文献   

20.
A mathematical study is developed for the electro-osmotic flow of a nonNewtonian fluid in a wavy microchannel in which a Bingham viscoplastic fluid model is considered. For electric potential distributions, a Poisson-Boltzmann equation is employed in the presence of an electrical double layer(EDL). The analytical solutions of dimensionless boundary value problems are obtained with the Debye-Huckel theory, the lubrication theory, and the long wavelength approximations. The effects of the Debyelength parameter, the plug flow width, the Helmholtz-Smoluchowski velocity, and the Joule heating on the normalized temperature, the velocity, the pressure gradient, the volumetric flow rate, and the Nusselt number for heat transfer are evaluated in detail using graphs. The analysis provides important findings regarding heat transfer in electroosmotic flows through a wavy microchannel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号