首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It is suggested that noncontact action of a magnetic field on shaped-charge jet elements be used to decrease the penetration depth. A decrease in the depth is attained. A physicomathematical model for the process is constructed that allows one to optimize performance of devices used to realize the action of an external magnetic field. Lykov Academic Scientific Complex “Institute of Heat and Mass Exchange,” Minsk 220072. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 39, No. 3, pp. 36–43, May–June, 1998.  相似文献   

2.
In this work a simplified analytical model and the results of an experimental investigation of the influence of an external magnetic field on the rheological characteristics of a suspension of iron particles in silicon oil is presented. The particles of iron were approximately of a circular shape, from 3 to 5 μm, with a maximum concentration of 1010 particles/cm3. The viscosity of the carrying fluid varied from 80 to 240 cP.The experimental channel was located in a closed circuit of forced circulation of the ferromagnetic suspension. The entire length of 750 mm was placed in an area of a homogeneous magnetic field, with the velocity vector of the suspension being perpendicular to the direction of the magnetic field. The strength of the magnetic field could be changed continually from 0 to 9000 G.The results obtained are shown in the form of parametrical dependencies of the rheological characteristics of the ferromagnetic suspension. With that, the concentration of the solid phase of the suspension is parametrically changed, along with the strength of the external magnetic field and the viscosity of the carrying fluid.In the range of parameters studied, the external magnetic field leads to a Bingham character of behavior of the ferromagnetic suspension.  相似文献   

3.
An investigation of the effect of the local electromagnetic body force on the flow behavior around a circular cylinder is conducted. The electromagnetic force is applied locally on the cylinder surface in the range of 70–130° from the stagnation point along the cylinder circumference in both clockwise and counterclockwise directions. The numerical results predict that the Lorentz force applied in the circumferential direction on the cylinder moves the separation point rearward, and reduces the drag. To validate the numerical results, an experiment is conducted with a circular cylinder of 5 cm diameter. The electrodes and permanent magnets are flush mounted on the cylinder in such a way that the Lorentz force is generated in the circumferential direction. Flow visualization with polystyrene particles and direct drag measurement using strain gages are made. The fluid used is natural sea water of electric conductivity of about 4 (Ω m)-1. Induction effect can be neglected in the present investigation due to the low flow speed and the Lorentz force is proportional to E×B where E is an applied electric field and B is a magnetic field. Received: 7 June 1998/Accepted: 28 April 1999  相似文献   

4.
Influence of geometry on separation efficiency in a hydrocyclone   总被引:2,自引:0,他引:2  
A numerical study of the gas–liquid–solid multiphase flow in hydrocyclones is presented. Three models of turbulence, the RNG kε model, the Reynolds stress model and Large eddy simulation with the volume of fluid model (VOF) multiphase model for simulating air core are compared in order to predict axial and tangential velocity distributions. This presentation is mainly aimed at identifying an optimal method, used to study effective parameters, based on which, eventually, effect of inlet flow rate variations and body dimension variations such as underflow diameter, overflow diameter and cone angle on the separation performance and pressure drop are investigated. The results are then used in the simulation of particle flow described by the stochastic Lagrangian model. The results suggest that the predicted size classifications are approximately similar to those of RSM and LES methods. Predictions using the RSM model are found in agreement with experimental results with a marginal error within the range of 4 to 8%. Proceeding model validation, parametric studies have been carried out concerning the influence of velocity inlet, particle size and body dimension such as underflow and overflow diameter and cone angle. The predictions demonstrate that the flow fields in the hydrocyclones with different sizes and lengths are different, which yields different performances.  相似文献   

5.
Numerical simulation of Poiseuille flow of liquid Argon in a nanochannel using the non-equilibrium molecular dynamics simulation (NEMD) is performed. The nanochannel is a three-dimensional rectangular prism geometry where the concerned numbers of Argon atoms are 2,700, 2,550 and 2,400 at 102, 108 and 120 K. Poiseuille flow is simulated by embedding the fluid particles in a uniform force field. An external driving force, ranging from 1 to 11 PN (Pico Newton), is applied along the flow direction to inlet fluid particles during the simulation. To obtain a more uniform temperature distribution across the channel, local thermostating near the wall are used. Also, the effect of other mixing rules (Lorenthz–Berthelot and Waldman–Kugler rules) on the interface structure are examined by comparing the density profiles near the liquid/solid interfaces for wall temperatures 108 and 133 K for an external force of 7 PN. Using Kong and Waldman–Kugler rules, the molecules near the solid walls were more randomly distributed compared to Lorenthz–Berthelot rule. These mean that the attraction between solid–fluid atoms was weakened by using Kong rule and Waldman–Kugler rule rather than the Lorenthz–Berthelot rule. Also, results show that the mean axial velocity has symmetrical distribution near the channel centerline and an increase in external driving force can increase maximum and average velocity values of fluid. Furthermore, the slip length and slip velocity are functions of the driving forces and they show an arising trend with an increase in inlet driving force and no slip boundary condition is satisfied at very low external force (<1 PN).  相似文献   

6.
The turbulent fluid and particle interaction in the turbulent boundary layer for cross flow over a cylinder has been experimentally studied. A phase-Doppler anemometer was used to measure the mean and fluctuating velocities of both phases. Two size ranges of particles (30μm–60μm and 80μm–150μm) at certain concentrations were used for considering the effects of particle sizes on the mean velocity profiles and on the turbulent intensity levels. The measurements clearly demonstrated that the larger particles damped fluid turbulence. For the smaller particles, this damping effect was less noticeable. The measurements further showed a delay in the separation point for two phase turbulent cross flow over a cylinder. The project supported by the National Natural Science Foundation of China  相似文献   

7.
 When a shock wave impinges on a surface, it reflects and propagates across the surface at supersonic velocity. The gas is impulsively accelerated by the passing shock wave. The resulting high-speed flow imparts sufficiently strong forces to particles on the surface to overcome strong adhesive forces and entrain the surface-bound particles into the gas. This paper describes an experimental study of the removal of fine particles from a surface by impinging shock waves. The surfaces examined in this study were glass slides on which uniformly sized (8.3 μm diameter), spherical polystyrene particles had been deposited. Shock waves were generated in a small, open-ended shock tube at various heights above and impingement angles to the surface. Particle detachment from the carefully prepared substrates was determined from images of the surfaces recorded before and after shock impingement. A single shock wave effectively cleaned a large surface area. The centerline length of the cleared region was used to characterize the efficacy of shock cleaning. A model based upon the far field solution for a point source surface shock provides a good fit to the clearance length data and yields an estimate to the threshold shock strength for particle removal. Received: 13 November 1997/Accepted: 23 April 1998  相似文献   

8.
A new type of scrubbing system equipped with air-atomized spray nozzles, full cone type spray nozzles and the maze shape channels has been developed and the mass transfer mechanism to remove sub-micron particles is analyzed. There is a minimal time duration for the mixture of air and sprayed water droplets should remain in the scrubbing zone for the sub-micron particles and hydrogen fluoride (HF) gas to diffuse and be captured by water droplets. The grown water droplets enter the maze shape channels which have sharp corners and bends to eliminate the water droplets by collision with the walls. As a result of applying the developed design methodology, the sub-micron particle removal efficiencies of the scrubber are found to be above 99% for the particles of 0.5–1 μm, 96% for those of 0.3–0.5 μm, and 86% for those smaller than 0.3 μm in diameter under the optimum operating condition.  相似文献   

9.
A particle image velocimetry system for microfluidics   总被引:20,自引:0,他引:20  
 A micron-resolution particle image velocimetry (micro-PIV) system has been developed to measure instantaneous and ensemble-averaged flow fields in micron-scale fluidic devices. The system utilizes an epifluorescent microscope, 100–300 nm diameter seed particles, and an intensified CCD camera to record high-resolution particle-image fields. Velocity vector fields can be measured with spatial resolutions down to 6.9×6.9×1.5 μm. The vector fields are analyzed using a double-frame cross-correlation algorithm. In this technique, the spatial resolution and the accuracy of the velocity measurements is limited by the diffraction limit of the recording optics, noise in the particle image field, and the interaction of the fluid with the finite-sized seed particles. The stochastic influence of Brownian motion plays a significant role in the accuracy of instantaneous velocity measurements. The micro-PIV technique is applied to measure velocities in a Hele–Shaw flow around a 30 μm (major diameter) elliptical cylinder, with a bulk velocity of approximately 50 μm s-1. Received: 26 November 1997/Accepted: 26 February 1998  相似文献   

10.
This study is devoted to the explanation of different characteristics of magnetic filtration and the way these characteristics affect the important filtration parameters. Magnetic fields in pores and the force effect of these fields on magnetic particles and the magnetization properties of packed beds composed of ferromagnetic spheres and metal chips are evaluated. The profile of accumulation and capture regions of the particles, the variation of the fluid velocity in these regions and analytic expressions of particle capture radius are presented. The effects of filtration regime parameters on magnetic filter performance were investigated. An analytical expression has been obtained for the dependence of the logarithmic efficiency coefficient on filtration velocity, the geometry of filter elements, the particle size and other parameters of filtration. The stationary and non-stationary equations of the magnetic filtration processes are given. An expression of magnetic filter performance is shown with dimensionless parameters obtained from the filtration system. These relations are useful for calculations in engineering practice, including the design of magnetic filters, provision of suggestions on construction, and optimization and control of filter operation.  相似文献   

11.
The cleaning of gases with low concentrations of small ferromagnetic or paramagnetic particles is a difficult task for conventional filtration. A new alternative procedure, magnetic filtration, is used in this work. Iron oxide aerosol was generated by elutriation of iron oxide particles from a fluidized bed consisting of a mixture of Geldart-C iron oxide powder and large spherical Geldart-B sand particles. The aerosol was filtered by means of a magnetic filter which consisted of one, two or three iron grates staggered to each other. The experimental installation contained also an isokinetic sampling system and a Microtrac SRA 150 Particle Analyser. A theoretical expression for filtration efficiency was deduced from a previous model taking into account the different forces acting on the iron oxide particles. Experimental filtration efficiency matches quite well calculated theoretical efficiency. It was found that an increase in particle size, in thee number of grates or in the applied magnetic field produced higher filtration efficiencies up to 100% in some cases. In all filtration experiments pressure drop through the magnetic filter was very small.  相似文献   

12.
Sedimentation acceleration of remanent iron oxide by magnetic flocculation   总被引:2,自引:0,他引:2  
Sedimentation based processes are widely used in industry to separate particles from a liquid phase. Since the advent of the "Nanoworld" the demand for effective separation technologies has rapidly risen, calling for the development of new separation concepts, one of which lies in hybrid separation using the superposition of a magnetic field for magnetic particles. Possible product portfolio of such separation consists of pigment production, nanomagnetics production for electronics and bio separation, A promising step in that direction is magnetic field enhanced cake filtration, which has by now progressed from batch to continuous ooeration. In sedimentation processes in a mass force field the settling behaviour of particles strongly depends on physico-chemical properties, concentration and size distribution of the particles. By adjusting the pH, the interparticle forces, in particular the electrostatic repulsion, can be manipulated. For remanent magnetic particles such as magnetite, pre-treatment in a magnetic field could lead to a change of interparticle interactions. By magnetizing the particles apart from van der Waals attraction and electrostatic repulsion, an additional potential is induced, the magnetic attraction, which could easily dominate the other potentials and result in agglomeration in the primary minimum. By sedimentation analysis, a wide spectrum of parameters like pH, magnetic field strength and concentration have been investigated. The results show a strong increase of sedimentation velocity by magnetic flocculation of the raw suspension. This leads to a rise in throughput due to the acceleration of sedimentation kinetics by imparting a non-chemical interaction to the physico-chemical properties in the feed stream of the separation apparatus.  相似文献   

13.
Frequency spectra of air turbulence of particle-laden flows were investigated by use of a laser-Doppler velocimeter to discover the eddy-length scales that are influenced by the transported particles. The influence of glass and steel particles of 100–1,000 μm diameter was measured in a horizontal channel and a horizontal pipe for the streamwise and transverse components of the velocity vector. Particles that were small compared with the integral length scale of the particle-laden flow decrease the turbulent power density of the greatest eddies in varying degrees, depending on mass loading and distance from the wall. All fractions create turbulence in their wakes, the size of which depends on loading and slip velocity. These results support the hypothesis that the particles consume energy by following the large eddies that are much greater than the particle diameters, and in so doing, turbulence is created by this energy. Received: 28 September 2000/Accepted: 9 April 2001  相似文献   

14.
In the present article, the rheological responses and dispersion stability of magnetorheological (MR) fluids were investigated experimentally. Suspensions of magnetite and carbonyl iron particles were prepared as model MR fluids. Under an external magnetic field (H 0) and a steady shear flow, the yield stress depends upon H 0 3/2. The Yield stress depended on the volume fraction of the particle (φ) linearly only at low concentration and increased faster at high fraction. Rheological behavior of MR fluids subjected to a small-strain oscillatory shear flow was investigated as a function of the strain amplitude, frequency, and the external magnetic field. In order to improve the stability of MR fluid, ferromagnetic Co-γ-Fe2O3 and CrO2 particles were added as the stabilizing and thickening agent in the carbonyl iron suspension. Such needle-like particles seem to play a role in the steric repulsion between the relatively large carbonyl iron particles, resulting in improved stability against rapid sedimentation of dense iron particles. Furthermore, the additive-containing MR suspensions exhibited larger yield stress, especially at higher magnetic field strength. Received: 4 April 2000 Accepted: 6 November 2000  相似文献   

15.
A particle image velocimetry (PIV) method has been developed to measure the velocity field inside and around a forming drop with a final diameter of 1 mm. The system, including a microscope, was used to image silicon oil drops forming in a continuous phase of water and glycerol. Fluorescent particles with a diameter of 1 μm were used as seeding particles. The oil was forced through a 200 μm diameter glass capillary into a laminar cross-flow in a rectangular channel. The velocity field was computed with a double-frame cross-correlation function down to a spatial resolution of 21 × 21 μm. The method can be used to calculate the shear stress induced at the interface by the cross-flow of the continuous phase and the main forces involved in the drop formation process.  相似文献   

16.
The geometry of the ribbon diode of the U-2 accelerator is optimized to increase both the current density and the total current of the relativistic electron beam for its subsequent injection into the plasma of a multimirror GOL-3 trap. Beam simulation in the diode was performed using the POISSON-2 applied software modified on the basis of the results obtained using the theory of a planar diode in an inclined magnetic field. As a result of the optimization, the diode geometry and the magnetic field configuration were found that should provide a factor of 1.5–2 increase in the current density in experiments with a small angular divergence of electron velocities. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 25–35, May–June, 2009.  相似文献   

17.
The evolution of the structure of a medium containing disperse elements (the drops in a weakly viscous fluid, rigid spheres in glycerin, and air pores in a gel) is studied experimentally in the case where the gradient temperature and the concentration fields are absent in the system, and the medium is isolated from the influence of an external force field (including gravity forces). It is shown that these systems are nonequilibrium: if the initial distance between disperse particles is of the order of their sizes, the particles approach until they come in contact (coagulation) irrespective of the scale of the system. Lavrent’ev Institute of Hydrodynamics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 3, pp. 53–58, May–June, 1999.  相似文献   

18.
A model of dynamics and heating of a plasma cloud in a magnetic field is considered in a two-temperature approximation. Based on a predictor-corrector-type implicit difference scheme, spreading of a plasma cloud in an external magnetic field is numerically simulated, and the influence of this field on spread dynamics is evaluated. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 121–132, May–June, 2007.  相似文献   

19.
The non-linear properties of iron based magneto-rheological (MR) fluids are investigated at low magnetic field strengths (0–1.7 kA/m) and different gap thickness (0–500 m) in a plate-plate configuration. Single-width chain models qualitatively predict the low-shear flow behavior when plotting the field-specific viscosity, F, as a function of the Mason number, Mn: a slope close to –1 is observed in log-log representations. Wall depletion effects are observed when the suspensions are sheared under the presence of low external magnetic fields applied and/or large gap distances. These results are correlated to frictional yield stress measurements and chain length distribution calculations in the presence of the external magnetic field. Finally, an equivalent slip layer thickness is calculated using the method of Yoshimura and Prudhomme.  相似文献   

20.
The effect of initial pressure on aluminum particles–air detonation was experimentally investigated in a 13 m long, 80 mm diameter tube for 100 nm and 2 μm spherical particles. While the 100 nm Al–air detonation propagates at 1 atm initial pressure in the tube, transition to the 2 μm aluminum–air detonation occurs only when the initial pressure is increased to 2.5 atm. The detonation wave manifests itself in a spinning wave structure. An increase in initial pressure increases the detonation sensitivity and reduces the detonation transition distance. Global analysis suggests that the tube diameter for single-head spinning detonation or characteristic detonation cell size would be proportional to (d 0: aluminum particle size, p 0: initial pressure). Its application to the experimental data results in m ~ O(1) and n ~ O(1) for 1 to 2 μm aluminum–air detonation, thus indicating a strong dependence on initial pressure and gas-phase kinetics for the aluminum reaction mechanism in detonation. Hence, combustion models based on the fuel droplet diffusion theory may not be adequate in describing micrometric aluminum–air detonation initiation, transition and propagation. For 2 μm aluminum–air mixtures at 2 atm initial pressure and below, experiments show a transition to a “dust quasi-detonation” that propagates quasi-steadily with a shock velocity deficit nearly 40% with respect to the theoretical C–J detonation value. The dust quasi- detonation wave can propagate in a tube with a diameter less than 0.4–0.5 times the diameter required for a spinning detonation wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号