首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 140 毫秒
1.
A continuum model is presented for the motion of a domain wall in a plane 90°-domain configuration subjected to an isolated extrinsic charge near the surface of a ferroelectric single crystal. Local pinning is postulated for the kinetic law. Before the appearance of the extrinsic charge, all polarization surface charges are taken to be neutralized by environmental charges. The domain wall motion after the appearance of the extrinsic charge is assumed to proceed sufficiently fast without any significant conductive currents on the surface or in the interior of the crystal such that new surface and interface polarization charges remain unscreened and contribute to the ferroelectric anisotropy energy. A non-admissible divergence of the electric field and consequently of the local thermodynamic driving force and of the domain wall velocity appears in the model if the domain wall charged by interface polarization charges intersects the crystal surface charged by surface polarization charges under an arbitrary angle. The physically possible domain wall angle is identified using the condition of a non-divergent driving force. The ferroelectric anisotropy energy and an intrinsic surface energy of the domain wall, however, do not provide stability of the domain wall trajectory against an unlimited increase of its curvature at the surface. The problem has been solved conceptually by proper account of the domain wall bending energy. Numerical and dimensional analysis explain also why domain walls driven by extrinsic charges remain almost straight in soft ferroelectrics.  相似文献   

2.
The thermodynamic driving force for domain growth in a rank-2 laminated ferroelectric crystal is derived in this article, and we used it, together with a homogenization theory, to study the issue of enhanced electrostrictive actuation recently reported by Burcsu et al. [2004. Large electrostrictive actuation of barium titanate single crystals. J. Mech. Phys. Solids 52, 823-846]. We derived this force from the reduction of Gibbs free energy with respect to the increase of domain concentration. It is shown that both the free energy and the thermodynamic force consist of three parts: the first arises from the difference in M0 and M1, the linear electromechanical compliances of the parent and product domains, respectively, at a given level of applied stress and electric field, the second stems from the electromechanical work associated with the change of spontaneous strain and spontaneous polarization during domain switch, and the third from the internal energy due to the distribution of polarizations strain and electric polarization inside the crystal. We prove that the first term is substantially lower than the second one, and the third one is identically zero with compatible domain pattern. The second one is, however, not exactly equal to the commonly written sum of the products of stress with strain, and electric field with polarization during switch, unless both domains have identical moduli in the common global axes. We also show that, with compatible domain patterns and when M1=M0, this driving force is identical to Eshelby's driving force acting on a flat interface due to the jump of energy-momentum tensor. Applications of the theory to a BaTiO3 crystal subjected to a fixed axial compression and decreasing electric field from the [0 0 1] state reveal that the crystal undergoes a three-stage switching process: (i) the 0→90° switch to form a rank-1 laminate, (ii) the 0→180° switch inside the 0° domain to form a laminate I with a concurrent 90°→−90° switch inside the 90° domain to form laminate II, creating a rank-2-laminated domain pattern, and (iii) finally the 90→180° switch. It is the exchange of stability between the 0, 90°, and 180° domains under compression and electric field that is the origin of the enhanced actuation. We illustrate these intrinsic features by showing the evolution of these domains, and demonstrate how the reported large actuation strain can be attained with a rank-2 laminate.  相似文献   

3.
This paper provides a theoretical and numerical framework to investigate the interactions between domain walls and arrays of dislocations in ferroelectric single crystals. A phase-field approach is implemented in a non-linear finite element method to determine equilibrium solutions for the coupled electromechanical interactions between a domain wall and a dislocation array. The numerical simulations demonstrate the effect of the relative size and orientation of dislocations on 180° and 90° domain wall configurations. In addition, results for the pinning strength of dislocations in the case that domain walls move due the application of external electric field and shear stress are computed. The presented numerical results are compared with the findings reported for charged defects and it is shown that non-charged defects, such as dislocations, can also interact strongly with domain walls, and therefore affect the ferroelectric material behavior.  相似文献   

4.
Ferroelectric solids, especially ferroelectric perovskites, are widely used as sensors, actuators, filters, memory devices, and optical components. While these have traditionally been treated as insulators, they are in reality wide-band-gap semiconductors. This semiconducting behavior affects the microstructures or domain patterns of the ferroelectric material and the interaction of ferroelectrics with electrodes, and is affected significantly by defects and dopants. In this paper, we develop a continuum theory of deformable, semiconducting ferroelectrics. A key idea is to introduce space charges and dopant density as field (state) variables in addition to polarization and deformation. We demonstrate the theory by studying oxygen vacancies in barium titanate. We find the formation of depletion layers, regions of depleted electrons, and a large electric field at the ferroelectric–electrode boundary. We also find the formation of a charge double layer and a large electric field across 90° domain walls but not across 180° domain walls. We show that these internal electric fields can give rise to a redistribution or forced diffusion of oxygen vacancies, which provides a mechanism for aging of ferroelectric materials.  相似文献   

5.
Reliability calls for a better understanding of the failure of ferroelectric ceramics. The fracture and fatigue of ferroelectric ceramics under an electric field or a combined electric and mechanical loading are investigated. The small-scale domain-switching model is modified to analyze failure due to fracture and fatigue. Effects of anisotropy and electromechanical load coupling are taken into account. Analytical expressions are obtained for domain-switching regions near the crack tip such that of 90° domain switching can be distinguished from 180° domain switching in addition to different initial poling directions. The crack tip stress intensity variation of ferroelectric ceramics due to the domain switching is analyzed. A positive electric field tends to enhance the propagation of an insulating crack perpendicular to the poling direction, while a negative field impedes it. Fatigue crack growth under various coupling loads and effects of the stress field and electric field on near field stress intensity variation are analyzed. Predicted crack growth versus cyclic electric field agrees well with experiment.  相似文献   

6.
The origin of nonlinearity in a ferroelectric crystal is domain reorientation, and such a process can be affected by the presence of a compressive stress. In this article we examine how a superimposed compression affects the evolution of new domain and how it changes the shape of the hysteresis loop. We start out by considering the thermodynamic driving force for domain reorientation, and then use a dual-phase homogenization theory to calculate the overall response. To uncover the influence of a compressive stress, the theory is used to calculate the hysteresis loop between the electric displacement D and the electric field E of a BaTiO3 crystal, first without and then with a compression, using a two-consecutive 90° switch model (i.e. 0°  90°  180°). It is found that, from the initial 0° position, the compressive stress will increase the thermodynamic driving force and promote an earlier onset of the 90° domain, but its presence will cause a significant delay for the reorientation process to pass through the intermediate 90° state in route to its final 180° configuration. The D vs. E loop then exhibits a more round shape and a lesser steep slope near the coercive field. The delayed passage and more rounded shape are found to be consistent with a recent experimental observation [Burcsu et al., 2004. J. Mech. Phys. Solids 52, 823–846].  相似文献   

7.
We have conducted a systematical investigation to reveal the stability and evolution path of various ferroelectric domain patterns in nanofilms subjected to mechanical loads and related flexoelectric field. Within a rigorous framework of flexoelectricity, a phase-field approach has been established for simulating the domain structure of ferroelectric nanofilms. The electromechanical fields of the nanofilms are numerically solved by a fast Fourier transform technique (FFT) based on the combination of Khachaturyan's microscopic elastic theory and Stroh's formalism of anisotropic elasticity. Using this approach, we simulate eight types of domain patterns that can be stabilized in the nanofilms. It is further demonstrated that these domain patterns can be significantly affected by the mechanical loads and related flexoelectric field and exhibit fruitful evolution paths. To adapt the applied mechanical strain and strain gradient, the domain pattern may remain stable, evolve into another polydomain pattern, or become a monodomain state (an effect of domain erasing). The domain fraction, detailed domain morphology, average stresses in the nanofilms, average polarization and temporal evolution characteristics of the domain patterns under various mechanical loads and sources of flexoelectric field have been analyzed. This investigation should provide instructive information for the practical application of ferroelectric nanofilms under complex and changeable mechanical conditions.  相似文献   

8.
A continuum thermodynamics formulation for micromagnetics coupled with mechanics is devised to model the evolution of magnetic domain and martensite twin structures in ferromagnetic shape memory alloys. The theory falls into the class of phase-field or diffuse-interface modeling approaches. In addition to the standard mechanical and magnetic balance laws, two sets of micro-forces and their associated balance laws are postulated; one set for the magnetization order parameter and one set for the martensite order parameter. Next, the second law of thermodynamics is analyzed to identify the appropriate material constitutive relationships. The proposed formulation does not constrain the magnitude of the magnetization to be constant, allowing for spontaneous magnetization changes associated with strain and temperature. The equations governing the evolution of the magnetization are shown to reduce to the commonly accepted Landau-Lifshitz-Gilbert equations for the case where the magnetization magnitude is constant. Furthermore, the analysis demonstrates that under certain limiting conditions, the equations governing the evolution of the martensite-free strain are shown to be equivalent to a hyperelastic strain gradient theory. Finally, numerical solutions are presented to investigate the fundamental interactions between the magnetic domain wall and the martensite twin boundary in ferromagnetic shape memory alloys. These calculations determine under what conditions the magnetic domain wall and the martensite twin boundary can be dissociated, resulting in a limit to the actuating strength of the material.  相似文献   

9.
The one-dimensional free energy model for ferroelectric materials developed by Smith et al. [29–31] is generalized to two dimensions. The two-dimensional free energy potential proposed in this paper consists of four energy wells that correspond to four variants of the material. The wells are separated by four saddle points, representing the barriers for 90°-switching processes, and a local maximum, across which 180°-switching processes take place. The free energy potential is combined with evolution equations for the variant fractions based on the theory of thermally activated processes. The model is compared to recent measurements on BaTiO3 single crystals by Burcsu et al. [8], and predicitions are made concerning the response to the application of in-plane multi-axial electric fields at various frequencies and loading directions. The kinetics of the 90°- and 180°-switching processes are discussed in detail.  相似文献   

10.
Many physical experiments have shown that the domain switching in a ferroelectric material is a complicated evolution process of the domain wall with the variation of stress and electric field. According to this mechanism, the volume fraction of the domain switching is introduced in the constitutive law of ferroelectric ceramic and used to study the nonlinear constitutive behavior of ferroelectric body in this paper. The principle of stationary total energy is put forward in which the basic unknown quantities are the displacement u i , electric displacement D i and volume fraction ρ I of the domain switching for the variant I. Mechanical field equation and a new domain switching criterion are obtained from the principle of stationary total energy. The domain switching criterion proposed in this paper is an expansion and development of the energy criterion. On the basis of the domain switching criterion, a set of linear algebraic equations for the volume fraction ρ I of domain switching is obtained, in which the coefficients of the linear algebraic equations only contain the unknown strain and electric fields. Then a single domain mechanical model is proposed in this paper. The poled ferroelectric specimen is considered as a transversely isotropic single domain. By using the partial experimental results, the hardening relation between the driving force of domain switching and the volume fraction of domain switching can be calibrated. Then the electromechanical response can be calculated on the basis of the calibrated hardening relation. The results involve the electric butterfly shaped curves of axial strain versus axial electric field, the hysteresis loops of electric displacement versus electric filed and the evolution process of the domain switching in the ferroelectric specimens under uniaxial coupled stress and electric field loading. The present theoretic prediction agrees reasonably with the experimental results given by Lynch. The project supported by the National Natural Science Foundation of China (10572138).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号