首页 | 本学科首页 官方微博 | 高级检索

共查询到19条相似文献，搜索用时 195 毫秒
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.
This paper presents the dimension split element-free Galerkin (DSEFG) method for three-dimensional potential problems, and the corresponding formulae are obtained. The main idea of the DSEFG method is that a three-dimensional potential problem can be transformed into a series of two-dimensional problems. For these two-dimensional problems, the improved moving least-squares (IMLS) approximation is applied to construct the shape function, which uses an orthogonal function system with a weight function as the basis functions. The Galerkin weak form is applied to obtain a discretized system equation, and the penalty method is employed to impose the essential boundary condition. The finite difference method is selected in the splitting direction. For the purposes of demonstration, some selected numerical examples are solved using the DSEFG method. The convergence study and error analysis of the DSEFG method are presented. The numerical examples show that the DSEFG method has greater computational precision and computational efficiency than the IEFG method.  相似文献

13.
In this paper, the enriched boundary element-free method for two-dimensional fracture problems is presented. An improved moving least-squares (IMLS) approximation, in which the orthogonal function system with a weight function is used as the basis function, is used to obtain the shape functions. The IMLS approximation has greater computational efficiency and precision than the existing moving least-squares (MLS) approximation, and does not lead to an ill-conditioned system of equations. Combining the boundary integral equation (BIE) method and the IMLS approximation, a boundary element-free method (BEFM), for two-dimensional fracture problems is obtained. For two-dimensional fracture problems, the enriched basis function is used at the tip of the crack, and then the enriched BEFM is presented. In comparison with other existing meshless boundary integral equation methods, the BEFM is a direct numerical method in which the basic unknown quantity is the real solution of the nodal variables, and the boundary conditions can be implemented easily, which leads to a greater computational precision. When the enriched BEFM is used, the singularity of the stresses at the tip of the crack can be shown better than that in the BEFM. For the purposes of demonstration, some selected numerical examples are solved using the enriched BEFM.  相似文献

14.
This paper presents the thermal solution of cylindrical composite systems using meshless element free Galerkin (EFG) method. The EFG method utilizes the moving least square approximants, which are constructed by using a weight function, a basis function and a set of non-constant coefficients to approximate the unknown function of temperature. Dirichlet (essential) boundary conditions have been enforced using Lagrange multiplier and penalty methods. Existing rational weight function has been modified and used in the present analysis. MATLAB codes have been developed to obtain the numerical solution. The EFG results have been obtained using cubicspline, quarticspline, Gaussian, quadratic, hyperbolic, exponential, rational and cosine weight functions for a model problem. The results obtained using different EFG weight functions are also compared with those obtained by finite element method. The effect of scaling and penalty parameters has also been studied in detail.  相似文献

15.

16.

17.

18.

19.