首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
A multi‐layer hybrid grid method is constructed to simulate complex flow field around 2‐D and 3‐D configuration. The method combines Cartesian grids with structured grids and triangular meshes to provide great flexibility in discretizing a domain. We generate the body‐fitted structured grids near the wall surface and the Cartesian grids for the far field. In addition, we regard the triangular meshes as an adhesive to link each grid part. Coupled with a tree data structure, the Cartesian grid is generated automatically through a cell‐cutting algorithm. The grid merging methodology is discussed, which can smooth hybrid grids and improve the quality of the grids. A cell‐centred finite volume flow solver has been developed in combination with a dual‐time stepping scheme. The flow solver supports arbitrary control volume cells. Both inviscid and viscous flows are computed by solving the Euler and Navier–Stokes equations. The above methods and algorithms have been validated on some test cases. Computed results are presented and compared with experimental data. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
A nested multi‐grid solution algorithm has been developed for an adaptive Cartesian/Quad grid viscous flow solver. Body‐fitted adaptive Quad (quadrilateral) grids are generated around solid bodies through ‘surface extrusion’. The Quad grids are then overlapped with an adaptive Cartesian grid. Quadtree data structures are employed to record both the Quad and Cartesian grids. The Cartesian grid is generated through recursive sub‐division of a single root, whereas the Quad grids start from multiple roots—a forest of Quadtrees, representing the coarsest possible Quad grids. Cell‐cutting is performed at the Cartesian/Quad grid interface to merge the Cartesian and Quad grids into a single unstructured grid with arbitrary cell topologies (i.e., arbitrary polygons). Because of the hierarchical nature of the data structure, many levels of coarse grids have already been built in. The coarsening of the unstructured grid is based on the Quadtree data structure through reverse tree traversal. Issues arising from grid coarsening are discussed and solutions are developed. The flow solver is based on a cell‐centered finite volume discretization, Roe's flux splitting, a least‐squares linear reconstruction, and a differentiable limiter developed by Venkatakrishnan in a modified form. A local time stepping scheme is used to handle very small cut cells produced in cell‐cutting. Several cycling strategies, such as the saw‐tooth, W‐ and V‐cycles, have been studies. The V‐cycle has been found to be the most efficient. In general, the multi‐grid solution algorithm has been shown to greatly speed up convergence to steady state—by one to two orders. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
复杂无粘流场数值模拟的矩形/三角形混合网格技术   总被引:5,自引:0,他引:5  
张来平  张涵信 《力学学报》1998,30(1):104-108
建立了一套模拟复杂无粘流场的矩形/三角形混合网格技术,其中三角形仅限于物面附近,发挥非结构网格的几何灵活性,以少量的网格模拟复杂外型;同时在以外的区域采用矩形结构网格,发挥矩形网格计算简单快速的优势,有效地克服全非结构网格计算方法需要较大内存量和较长CPU时间的不足.混合网格系统由修正的四分树方法生成.将NND有限差分与NND有限体积格式有机地融合于混合网格计算,消除了全矩形网格模拟曲边界的台阶效应,同时保证了网格间的通量守恒.数值实验表明本方法在模拟复杂无粘流场方面的灵活性和高效性.  相似文献   

4.
Cartesian grid with cut‐cell method has drawn attention of CFD researchers owing to its simplicity. However, it suffers from the accuracy near the boundary of objects especially when applied to viscous flow analysis. Hybrid grid consisting of Cartesian grid in the background, body‐fitted layer near the object, and transition layer connecting the two is an interesting alternative. In this paper, we propose a robust method to generate hybrid grid in two‐dimensional (2D) and three‐dimensional (3D) space for viscous flow analysis. In the first step, body‐fitted layer made of quadrangles (in 2D) or prisms (in 3D) is created near the object's boundary by extruding front nodes with a speed function depending on the minimum normal curvature obtained by quadric surface fitting. To solve global interferences effectively, a level set method is used to find candidates of colliding cells. Then, axis‐aligned Cartesian grid (quadtree in 2D or octree in 3D) is filled in the rest of the domain. Finally, the gap between body‐fitted layer and Cartesian grid is connected by transition layer composed of triangles (in 2D) or tetrahedrons (in 3D). Mesh in transition layer is initially generated by constrained Delaunay triangulation from sampled points based on size function and is further optimized to provide smooth connection. Our approach to automatic hybrid grid generation has been tested with many models including complex geometry and multi‐body cases, showing robust results in reasonable time. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
6.
The benefits of unstructured grids in hydrodynamic models are well understood but in many cases lead to greater numerical diffusion compared with methods available on structured grids. The flexible nature of unstructured grids, however, allows for the orientation of the grid to align locally with the dominant flow direction and thus decrease numerical diffusion. We investigate the relationship between grid alignment and diffusive errors in the context of scalar transport in a triangular, unstructured, 3‐D hydrodynamic code. Analytical results are presented for the 2‐D anisotropic numerical diffusion tensor and verified against idealized simulations. Results from two physically realistic estuarine simulations, differing only in grid alignment, show significant changes in gradients of salinity. Changes in scalar gradients are reflective of reduced numerical diffusion interacting with the complex 3‐D structure of the transporting flow. We also describe a method for utilizing flow fields from an unaligned grid to generate a flow‐aligned grid with minimal supervision. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
ABSTRACT

A hybrid Cartesian-based body-fitted adaptive grid method for compressible Navier–Stokes equations is implemented and investigated. In this method, the body-fitted structured grids are generated around the geometries, and the left regions are filled with Cartesian grids. To transfer the data between the different grids, the donor cell searching technique is adopted. An unstructured data-based finite volume update procedure is used, and least squares method is suggested to retain the second order in the overlap region. The moving shock waves with different speeds and vortex passing through the interfaces of the hybrid Cartesian grid are used to explore the accuracy and conservation. A new technique is presented to deal with the non-physical stagnation of slowly moving shock wave around the interface of grid. Numerical examples are presented to demonstrate the results. The three-dimensional extension has also been shown by a benchmark problem.  相似文献   

8.
This paper presents a three‐dimensional unstructured Cartesian grid model for simulating shallow water hydrodynamics in lakes, rivers, estuaries, and coastal waters. It is a flux‐based finite difference model that uses a cut‐cell approach to fit the bottom topography and shorelines and, at the same time, has the flexibility of discretizing complex geometries with Cartesian grids that can be arbitrarily downsized in the two horizontal directions simultaneously. Because of the use of Cartesian grids, the grid generation is very simple and does not suffer the grid generation headache often seen in many other unstructured models, as the unstructured Cartesian grid model does not have any requirements on the orthogonality of the grids. The newly developed unstructured Cartesian grid model was validated against analytical solutions for a three‐dimensional seiching case in a rectangular basin, before it was compared with another three‐dimensional model named LESS3D for circulations and salinity transport processes in an idealized embayment that is driven by tides and freshwater inflows. Model tests show that the numerical procedure used in the unstructured Cartesian grid model is robust. Similar to other unstructured models, a variable grid size has resulted in a smaller number of grids required for a reasonable model simulation, which in turn reduces the CPU time used in the model run. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
A method of automatic grid generation for complex boundaries in Cartesian co-ordinates is proposed in this paper. In addition to the Cartesian grid lines the diagonal segments are used for the approximations of complex geometries in Cartesian co-ordinates. A structured Cartesian grid is employed for the sake of the numerical simplicity and the potential of automatic grid generation. The automatic grid generation is achieved by this diagonal Cartesian method and the accuracy estimations of geometry approximations are given. The approximations of a few complex geometries, such as the multibody system in porous media, lake banks, grooved channels and spheres are shown and analyzed. The proposed method is verified by the numerical solutions of a rotated cavity flow. It is shown that the diagonal Cartesian method improves both the accuracy of geometry approximations and the numerical solution of a rotated cavity flow, comparing with the traditional saw-tooth method in which only Cartesian grid lines are utilized for geometry approximations. The stability and convergence of the proposed method is demonstrated. Finally, the application of the diagonal Cartesian method for the prediction of a grooved channel flow is presented. © 1998 John Wiley & Sons, Ltd.  相似文献   

10.
A new method for computing the fluid flow in complex geometries using highly non‐smooth and non‐orthogonal staggered grid is presented. In a context of the SIMPLE algorithm, pressure and physical tangential velocity components are used as dependent variables in momentum equations. To reduce the sensitivity of the curvature terms in response to coordinate line orientation change, these terms are exclusively computed using Cartesian velocity components in momentum equations. The method is then used to solve some fairly complicated 2‐D and 3‐D flow field using highly non‐smooth grids. The accuracy of results on rough grids (with sharp grid line orientation change and non‐uniformity) was found to be high and the agreement with previous experimental and numerical results was quite good. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
A Cartesian grid method using immersed boundary technique to simulate the impact of body in fluid has become an important research topic in computational fluid dynamics because of its simplification, automation of grid generation, and accuracy of results. In the frame of Cartesian grid, one often uses finite volume method with second order accuracy or finite difference method. In this paper, an h‐adaptive Runge–Kutta discontinuous Galerkin (RKDG) method on Cartesian grid with ghost cell immersed boundary method for arbitrarily complex geometries is developed. A ghost cell immersed boundary treatment with the modification of normal velocity is presented. The method is validated versus well documented test problems involving both steady and unsteady compressible flows through complex bodies over a wide range of Mach numbers. The numerical results show that the present boundary treatment to some extent reduces the error of entropy and demonstrate the efficiency, robustness, and versatility of the proposed approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
A parallel finite volume method for the Navier–Stokes equations with adaptive hybrid prismatic/tetrahedral grids is presented and evaluated in terms of parallel performance. A new method of domain partitioning for complex 3D hybrid meshes is also presented. It is based on orthogonal bisection of a special octree corresponding to the hybrid mesh. The octree is generated automatically and can handle any type of 3D geometry and domain connectivity. One important property of the octree-based partitioning that is exploited is the octree's ability to yield load-balanced partitions that follow the shape of the geometry. This biasing of the octree results in a reduced number of grid elements on the interpartition boundaries and thus fewer data to communicate among processors. Furthermore, the octree-based partitioning gives similar quality of partitions for very different geometries, while requiring minimal user interaction and little computational time. The partitioning method is evaluated in terms of quality of the subdomains as well as execution time. Viscous flow simulations for different geometries are employed to examine the effectiveness of the octree-based partitioning and to test the scalability of parallel execution of the Navier–Stokes solver and hybrid grid adapter on two different parallel systems, the Intel Paragon and the IBM SP2. © 1998 John Wiley & Sons, Ltd.  相似文献   

13.
This paper proposes a multigrid technique for Cartesian grid flow solvers. A recently developed ghost body‐cell method for inviscid flows is combined with a nested‐level local refinement procedure, which employs multigrid to accelerate convergence to steady state. Different from standard multigrid applications for body‐fitted grids, a fictitious residual needs to be defined in the ghost cells to perform a correct residual collection and thus to avoid possible stalling of the multigrid procedure. The efficiency of the proposed local refinement multigrid Cartesian method is demonstrated for the case of the inviscid subsonic flow past a circular body. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
We present in this paper an efficient and accurate volume of fluid (VOF) type scheme to compute moving interfaces on unstructured grids with arbitrary quadrilateral mesh elements in 2D and hexahedral elements in 3D. Being an extension of the multi‐dimensional tangent of hyperbola interface capturing (THINC) reconstruction proposed by the authors in Cartesian grid, an algebraic VOF scheme is devised for arbitrary quadrilateral and hexahedral elements. The interface is cell‐wisely approximated by a quadratic surface, which substantially improves the numerical accuracy. The same as the other THINC type schemes, the present method does not require the explicit geometric representation of the interface when computing numerical fluxes and thus is very computationally efficient and straightforward in implementation. The proposed scheme has been verified by benchmark tests, which reveal that this scheme is able to produce high‐quality numerical solutions of moving interfaces in unstructured grids and thus a practical method for interfacial multi‐phase flow simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

15.
A data compression method based on image encoding techniques is presented for a flow simulation data set. An input flow field data set is converted into the octree structure by discrete wavelet transform, and then quantized finely or coarsely depending on its importance in the flow field. Embedded zerotree wavelet encoding as the image encoding technique and entropy encoding reduce the data size by making use of the octree structure created previously. The present compression method is incorporated in a block‐structured Cartesian mesh method called Building‐Cube method. The Building‐Cube method gives not only good performance in the flow simulation but also consistency with the embedded zerotree wavelet encoding in the data compression. Three compression cases for incompressible and compressible flow simulations, including a large‐scale simulation with O(10 8) mesh points, demonstrate that the present compression method gives both high compression ratios and good qualities of compressed data. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In large‐scale shallow flow simulations, local high‐resolution predictions are often required in order to reduce the computational cost without losing the accuracy of the solution. This is normally achieved by solving the governing equations on grids refined only to those areas of interest. Grids with varying resolution can be generated by different approaches, e.g. nesting methods, patching algorithms and adaptive unstructured or quadtree gridding techniques. This work presents a new structured but non‐uniform Cartesian grid system as an alternative to the existing approaches to provide local high‐resolution mesh. On generating a structured but non‐uniform Cartesian grid, the whole computational domain is first discretized using a coarse background grid. Local refinement is then achieved by directly allocating a specific subdivision level to each background grid cell. The neighbour information is specified by simple mathematical relationships and no explicit storage is needed. Hence, the structured property of the uniform grid is maintained. After employing some simple interpolation formulae, the governing shallow water equations are solved using a second‐order finite volume Godunov‐type scheme in a similar way as that on a uniform grid. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A hybrid building‐block Cartesian grid and gridless method is presented to compute unsteady compressible flows for complex geometries. In this method, a Cartesian mesh based on a building‐block grid is used as a baseline mesh to cover the computational domain, while the boundary surfaces are represented using a set of gridless points. This hybrid method combines the efficiency of a Cartesian grid method and the flexibility of a gridless method for the complex geometries. The developed method is used to compute a number of test cases to validate the accuracy and efficiency of the method. The numerical results obtained indicate that the use of this hybrid method leads to a significant improvement in performance over its unstructured grid counterpart for the time‐accurate solution of the compressible Euler equations. An overall speed‐up factor from six to more than one order of magnitude and a saving in storage requirements up to one order of magnitude for all test cases in comparison with the unstructured grid method are demonstrated. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
The volume of fluid (VOF) method is used to perform two‐phase simulations (gas–liquid). The governing Navier–Stokes conservation equations of the flow field are numerically solved on two‐dimensional axisymmetric or three‐dimensional unstructured grids, using Cartesian velocity components, following the finite volume approximation and a pressure correction method. A new method of adaptive grid local refinement is developed in order to enhance the accuracy of the predictions, to capture the sharp gas–liquid interface and to speed up the calculations. Results are compared with experimental measurements in order to assess the efficiency of the method. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

19.
This study presents an improved ghost‐cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work, ghost cells are mirrored through the boundary described using a level‐set method to farther image points, incorporating a higher‐order extra/interpolation scheme for the ghost‐cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost‐cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl–Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward‐facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost‐cell method can reach the accuracy of second order in L1 norm and higher than first order in L norm. Direct comparisons against the cut‐cell method demonstrate that the improved ghost‐cell method is almost equally accurate with better efficiency for boundary representation in high‐fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The paper presents a hybrid Cartesian grid and gridless approach to solve unsteady moving boundary flow problems. Unlike the Chimera clouds of points approach, the hybrid approach uses a Cartesian grid to cover most of the computational domain and a gridless method to calculate a relatively small region adjacent to the body surface, making use of the flexibility of the gridless method in handling surface grid with complicated geometry and the computational efficiency of the Cartesian grid. Four cases were conducted to examine the applicability, accuracy and robustness of the hybrid approach. Steady flows over a single NACA0012 airfoil and dual NACA0012 airfoils at different Mach numbers and angles of attack were simulated. Moreover, by implementing a dynamic hole cutting, node identification and information communication between the Cartesian grid and the gridless regions, unsteady flows over a pitching NACA0012 airfoil (small displacement) and two‐dimensional airfoil/store separation (large displacement) were performed. The computational results were found to agree well with earlier experimental data as well as computational results. Shock waves were accurately captured. The computational results show that the hybrid approach is of potential to solve the moving boundary flow problems. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号