首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
This paper develops a modified smoothed particle hydrodynamics (SPH) method to model the coalescence of colliding non-Newtonian liquid droplets. In the present SPH, a van der Waals (vdW) equation of state is particularly used to represent the gas-to-liquid phase transition similar to that of a real fluid. To remove the unphysical behavior of the particle clustering, also known as tensile instability, an optimized particle shifting technique is implemented in the simulations. To validate the numerical method, the formation of a Newtonian vdW droplet is first tested, and it clearly demonstrates that the tensile instability can be effectively removed. The method is then extended to simulate the head-on binary collision of vdW liquid droplets. Both Newtonian and non-Newtonian fluid flows are considered. The effect of Reynolds number on the coalescence process of droplets is analyzed. It is observed that the time up to the completion of the first oscillation period does not always increase as the Reynolds number increases. Results for the off-center binary collision of non-Newtonian vdW liquid droplets are lastly presented. All the results enrich the simulations of the droplet dynamics and deepen understandings of flow physics. Also, the present SPH is able to model the coalescence of colliding non-Newtonian liquid droplets without tensile instability.  相似文献   

2.
Droplet-droplet collisions occur in many spray systems. The collision of two spherical droplets in a gas is considered in terms of the five primary phenomenological outcomes: slow coalescence (SC), bounce (B), fast coalescence (FC), reflexive separation (RS), and stretching separation (SS). The boundaries that separate these outcomes were investigated herein in terms of droplet viscosity and surface tension as well as gas pressure and density. Gas effects are not accounted for previous models, but can be important for hydrocarbon drops in pressurized sprays associated with many fuel systems. Based on a comprehensive review of available drop-drop collision data, phenomenological models were proposed herein for a wide variety of test conditions. For slow coalescence/bouncing (SC/B), increasing droplet viscosity and gas pressure were found to increase the probability of a bouncing outcome of the collision. For the B/FC boundary, increasing droplet viscosity and gas density were also found to increase bouncing probability. In both cases, the variations can be explained in terms of the stability of the gas layer that develops between the droplets. Additionally, the Brazier-Smith model for the FC/SS boundary was modified to increase robustness for a wide range of droplet viscosities. In general, the present models reasonably predicted collision outcomes for a large variety of gas pressures and densities as well as droplet viscosities and surface tensions. These are also the first models to include gas effects and the first models of the SC/B boundary. However, the droplet diameters of the data set were limited in range from 200 to 400 microns. Significantly larger droplet collisions may include effects on initial non-sphericity while significantly smaller drop collisions may include effects on non-continuum flow and gas viscosity.  相似文献   

3.
《力学快报》2022,12(3):100333
In this paper, the smoothed particle hydrodynamics (SPH) method is employed in modeling and numerical simulation of droplet coalescence. Considering the effect of tangential force on boundary material, besides normal force, tangential force is also introduced in the continuum surface force (CSF) model. The formation of droplet, the coalescence processes of two droplets and three droplets are simulated by the modified CSF model. The validity of the modified model is verified from the aspects of the morphological change of the droplet, the smoothness of free surface and the conservation of the centroid of the system. Compared with finite element method, the results of the modified CSF model show that tangential force plays a crucial role in the CSF model when dealing with model boundary with curves and sharp angles.  相似文献   

4.
采用光滑粒子动力学SPH方法建立液滴冲击弹性基底的流固耦合数值模型,给出描述粘性流体和弹性固体运动的SPH离散方程和数值处理格式,引入人工耗散项来抑制标准SPH方法的数值震荡。为模拟液滴的表面张力效应,通过精确检测边界粒子,采用拉格朗日插值方法计算表面法向量和曲率,结合界面理论中的连续表面力CSF方法,建立了适用于自由表面液滴的表面力模型,方形液滴变形的模拟结果与拉普拉斯理论解吻合较好。随后,采用SPH流固耦合模型模拟1.0 mm直径水滴以不同速度(0.2 m/s~3.0 m/s)冲击两种薄板型基底,分析了基底弹性变形对液滴铺展、收缩以及回弹行为的影响。  相似文献   

5.
In this paper, we focused on modeling the collision phenomenon between two liquid droplets for application in spray simulations. It has been known that the existing O’Rourke collision model widely used in CFD codes is inaccurate in determining collision outcomes and droplet behavior. In addition, since the collision probability of the model follows a statistical approach involving computational cell geometry, the prediction results should be strongly dependent on the cell size. As a result, to more accurately calculate droplet collisions, the technique for predicting the droplet velocity and its direction after collision must be extended for use in spray modeling. Further, it is also necessary to consider all the possible collision outcomes, such as bouncing, stretching separation, reflexive separation and coalescence. Therefore, this paper describes the appropriateness of a composite concept for modeling collision outcomes and the implementation of deterministic collision algorithms into a multidimensional CFD code for the calculation of post-collisional droplet movements. Furthermore, the existing model does not consider the formation of satellite droplets. For this reason, our present modeling concept includes a fragmenting droplet collision model. Using the present model, we have validated the collision interactions between liquid droplets under high Weber number conditions by comparing our calculations with experimental results from a binary droplet collision. This paper also deals with the application of the model to inter-impingement sprays by analyzing the atomization characteristics, such as mean droplet size and velocity, spray tip penetrations and spray-shapes of the impinging spray using the suggested collision algorithms and then comparing the results with available experimental data.  相似文献   

6.
Binary droplet collisions are of importance in a variety of practical applications comprising dispersed two-phase flows. In the present work we focus on the collision of miscible droplets, where one droplet is composed of a high viscous liquid and the other one is of lower viscosity. This kind of collisions take place in, for instance, spray drying processes when droplets with different solid content collide in recirculation zones. The aim of this paper is to investigate the details of the flow inside the colliding droplets. For this purpose, two prototype cases are considered, namely the collision of equal sized droplets and the collision between a small and highly viscous droplet and a bigger low viscous droplet. A new experimental method has been developed in order to visualize the penetration and mixing process of two colliding droplets, where a fluorescence marker is added to one liquid and the droplets are excited by a laser. The results show a delay in the coalescence which takes place during the initial stage of a collision of droplets with different viscosities. Direct Numerical Simulations based on the Volume-of-Fluid method are used to study these collisions and to allow for a more detailed inspection of the mixing process. The method is extended to consider a second liquid with a different viscosity. In order to reproduce the delay of coalescence, an algorithm for the temporal suppression of the coalescence is applied. A predictive simulation of the delay is not possible, because the extremely thin air gap separating the droplets cannot be resolved by the numerics. This approach is validated by comparison with experimental data. The results provide local field data of the flow inside the collision complex, showing in particular a pressure jump at the liquid–liquid interface although no surface tension is present. The detailed analysis of the terms in the momentum balance show that the pressure jump results from the viscosity jump at the liquid–liquid interface.  相似文献   

7.
基于光滑粒子流体动力学SPH(Smoothed Particle Hydrodynamics)方法对Oldroyd-B黏弹性液滴撞击固壁面产生的弹跳行为进行了模拟与分析。首先,为了解决SPH模拟黏弹性自由表面流出现的张力不稳定性问题,联合粒子迁移技术提出了一种改进SPH方法。然后,对Oldroyd-B黏弹性液滴撞击固壁面产生的铺展行为进行了改进SPH模拟,与文献结果的比较验证了方法的有效性。最后,通过降低Reynolds数捕捉到了液滴的弹跳行为;并在此基础上,分析了液滴黏度比、Weissenberg数和Reynolds数对液滴弹跳行为的影响。结果表明,改进SPH方法可有效地模拟黏弹性自由表面流问题;液滴黏度比、Weissenberg数和Reynolds数对液滴最大回弹高度均有显著的影响。  相似文献   

8.
We numerically investigate bouncing and non-bouncing of droplets during isothermal impact on superhydrophobic surfaces. An in-house, experimentally validated, finite element method-based computational model is employed to simulate the droplet impact dynamics and transient fluid flow within the droplet. The liquid–gas interface is tracked accurately in Lagrangian framework with dynamic wetting boundary condition at three-phase contact line. The interplay of kinetic, surface and gravitational energies is investigated via systematic variation of impact velocity and equilibrium contact angle. The numerical simulations demonstrate that the droplet bounces off the surface if the total droplet energy at the instance of maximum recoiling exceeds the initial surface and gravitational energy, otherwise not. The non-bouncing droplet is characterized by the oscillations on the free surface due to competition between the kinetic and surface energy. The droplet dimensions and shapes obtained at different times by the simulations are compared with the respective measurements available in the literature. Comparisons show good agreement of numerical data with measurements, and the computational model is able to reconstruct the bouncing and non-bouncing of the droplet as seen in the measurements. The simulated internal flow helps to understand the impact dynamics as well as the interplay of the associated energies during the bouncing and non-bouncing. A regime map is proposed to predict the bouncing and non-bouncing on a superhydrophobic surface with an equilibrium contact angle of 155°, using data of 86 simulations and the measurements available in the literature. We discuss the validity of the computational model for the wetting transition from Cassie to Wenzel state on micro- and nanostructured superhydrophobic surfaces. We demonstrate that the numerical simulation can serve as an important tool to quantify the internal flow, if the simulated droplet shapes match the respective measurements utilizing high-speed photography.  相似文献   

9.
液滴碰撞现象普遍存在于动力装置燃烧室喷嘴的下游区域,影响燃料的雾化性能。为了揭示相同直径的双液滴中心碰撞机理,求解了轴对称坐标系下的N-S方程,采用VOF(Volume of Fluid)方法捕捉液滴碰撞过程中气液自由表面的演化规律。利用Qian等提供的实验结果对计算模型进行数值校验,验证了模型的准确性。在此基础上,研究了环境压强对液滴碰撞反弹后不同结果(分离和融合)的影响,分析了环境压强和Weber数对液滴碰撞分离的影响。结果表明,液滴在碰撞反弹后的状态(分离或融合)是由液滴间气膜压强与环境气动阻力共同作用的结果,环境压强对液滴碰撞分离过程基本没有影响;Weber数越大,碰撞过程中变形的幅度越大。  相似文献   

10.
DROPLET COLLISION AND COALESCENCE MODEL   总被引:3,自引:0,他引:3  
A new droplet collision and coalescence model was presented,a quick-sort method for locating collision partners was also devised and based on theoretical and experimental results,further advancement was made to the droplet collision outcome. The advantages of the two implementations of smoothed particle hydrodynamics (SPH) method were used to limit the collision of droplets to a given number of nearest droplets and define the probability of coalescence,numerical simulations were carried out for model validation.Results show that the model presented is mesh-independent and less time consuming,it can not only maintains the system momentum conservation perfectly,but not susceptible to initial droplet size distribution as well.  相似文献   

11.
Bouncing jets are fascinating phenomenon occurring under certain conditions when a jet impinges on a free surface. This effect is observed when the fluid is Newtonian and the jet falls in a bath undergoing a solid motion. It occurs also for non‐Newtonian fluids when the jets fall in a vessel at rest containing the same fluid. We investigate numerically the impact of the experimental setting and the rheological properties of the fluid on the onset of the bouncing phenomenon. Our investigations show that the occurrence of a thin lubricating layer of air separating the jet and the rest of the liquid is a key factor for the bouncing of the jet to happen. The numerical technique that is used consists of a projection method for the Navier–Stokes system coupled with a level set formulation for the representation of the interface. The space approximation is carried out with adaptive finite elements. Adaptive refinement is shown to be very important to capture the thin layer of air that is responsible for the bouncing. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
This study focused on the bouncing of sub-millimetric droplets (below 0.7 mm) of three different fluids, distilled water, technical ethanol and 1-propanol on a deep liquid pool of the same fluids. Four different flow regimes including low-energy-collision coalescence, bouncing, high-energy-collision coalescence, and partial coalescence were observed in the experiments. These regimes were plotted in velocity-diameter diagrams, which showed that there was a diameter limit, D ≈ 0.2 mm, above which the low-energy-collision coalescence was inhibited. The contact time, in which the impinging droplets and the liquid surface interacted in the bouncing process, was studied, and the results showed the same characteristic time scale of the contact time as those of Richard et al. (in Nature 417, 2002, 811) and Thoroddsen and Takehara (in Phys. Fluids 12 (6), 2000, 1265–1267). The restitution coefficients for all fluids were investigated, and the water data agreed well with the values reported in the literature (Bach et al., J. Fluid. Mech. 518, 2004, 157–185; Jayaratne and Mason, Proc. R. Soc. Lond. A 280 (1383), 1964, 545–565). Based on stable restitution coefficients, which varied with fluids, the effects from both viscosity and surface tension were discussed. Further, a correlation (K = We · Oh−0.58) was generalized to characterize the two transitions between coalescence (both high-energy- and low-energy-collision types) and bouncing, and a comparison with the model and data of Huang and Zhang (in Petrol Sci. 5, 2008, 62–66) showed that the generalized model characterized the coalescence-bouncing threshold well for the experimental fluids in the present study and oil with much higher viscosity.  相似文献   

13.
采用光滑粒子动力学SPH(Smoothed Particle Hydrodynamics)方法对三维溃坝流问题进行了数值模拟。为了逼真地模拟出坝内水体与壁面间相互作用而产生的水花飞溅、融合以及近壁面流动等现象,加入了混合长度形式的湍流模型。为了有效地防止粒子穿透固壁,提出了一种新型的适合三维数值模拟的固壁边界处理方法。应用SPH方法对三维溃坝流进行了数值模拟,并分别考虑了未添加障碍物和添加圆柱障碍物两种情形。计算结果表明,改进SPH方法能够精细地捕捉溃坝流在不同时刻的自由液面,并获得稳定而精确的数值结果。  相似文献   

14.
提出了一种SPH应力修正算法,即模型中的拉应力和压应力分别采用不同的插值核函数和状态方程来处理,改善应力稳定性问题。介绍了一种改进的Quintic核函数,用于改善模型中压应力的稳定性。通过增加钟型核函数的光滑长度,改善模型中拉应力的稳定性。采用该应力修正算法模拟了无重力条件下方形液滴的震荡变形过程,对比分析了不同算法的模拟结果。此外,为进一步验证算法的适用性,模拟了溃坝算例。研究表明,改进的Quintic型核函数明显改善了粒子聚集现象,该SPH应力修正方法可以使液滴具有更均匀的粒子分布以及更光滑的自由表面,有效改善了SPH方法中的压应力不稳定作用以及自由表面流的模拟精度。  相似文献   

15.
In this work,the transient free surface of container filling with non-linear constitutive equation’s fluids is numerically investigated by the smoothed particle hydrodynamics(SPH) method.Specifically,the filling process of a square container is considered for non-linear polymer fluids based on the Cross model.The validity of the presented SPH is first verified by solving the Newtonian fluid and OldroydB fluid jet.Various phenomena in the filling process are shown,including the jet buckling,jet thinning,splashing or spluttering,steady filling.Moreover,a new phenomenon of vortex whirling is more evidently observed for the Cross model fluid compared with the Newtonian fluid case.  相似文献   

16.
Coalescence of two water droplets in the oil was simulated using Computational Fluid Dynamics (CFD) techniques. The finite volume numerical method was applied to solve the Navier–Stokes equations in conjunction with the Volume of Fluid (VOF) approach for interface tracking. The effects of some parameters consisting of the collision velocity, off-center collision parameter, oil viscosity and water–oil interfacial tension on the coalescence time were investigated. The simulation results were validated against the experimental data available in the literature. The results revealed that quicker coalescence could be achieved if the head-on collisions occur or the droplets approach each other with a high velocity. In addition, low oil viscosities or large water–oil interfacial tensions cause less coalescence time. Moreover, a correlation was developed to predict coalescence efficiency as a function of the mentioned parameters.  相似文献   

17.
A method for simulating two‐phase flows including surface tension is presented. The approach is based upon smoothed particle hydrodynamics (SPH). The fully Lagrangian nature of SPH maintains sharp fluid–fluid interfaces without employing high‐order advection schemes or explicit interface reconstruction. Several possible implementations of surface tension force are suggested and compared. The numerical stability of the method is investigated and optimal choices for numerical parameters are identified. Comparisons with a grid‐based volume of fluid method for two‐dimensional flows are excellent. The methods presented here apply to problems involving interfaces of arbitrary shape undergoing fragmentation and coalescence within a two‐phase system and readily extend to three‐dimensional problems. Boundary conditions at a solid surface, high viscosity and density ratios, and the simulation of free‐surface flows are not addressed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, we study how accurately the Smoothed Particle Hydrodynamics (SPH) scheme accounts for the conservation and the generation of vorticity and circulation, in a low viscosity, weakly compressible, barotropic fluid in the context of free‐surface flows. We consider a number of simple examples to clarify the processes involved and the accuracy of the simulations. The first example is a differentially rotating fluid where the integration path for the circulation becomes progressively more complicated, whereas the structure of the velocity field remains simple. The second example is the collision of two rectangular regions of fluid. We show that SPH accurately predicts the time variation of the circulation as well as the total vorticity for selected domains advected by the fluid. Finally, a breaking wave is considered. For such a problem we show how the dynamics of the vorticity generated by the breaking process is captured by the SPH model. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
复杂的流变特性使凝胶推进剂的雾化过程存在一定困难,这制约了它的发展.聚合物胶凝剂的加入使凝胶推进剂具有黏弹性,从而在雾化时会产生黏弹性液滴,因此为了进一步认识凝胶推进剂的雾化机理、提高凝胶推进剂的雾化性能,对黏弹性液滴的碰撞行为进行数值模拟研究.针对凝胶推进剂雾化过程中出现的液滴撞击现象,考虑流体具有的黏弹性效应,采用...  相似文献   

20.
A theoretical model of a two-phase air/dispersed water spray flow in an icing wind tunnel is presented here. The mutual interactions taking place within the dispersed phase known as binary droplet collisions, as well as gravitational sedimentation are considered. Where large droplets and low air stream velocities are concerned, the effect of gravity on droplet dynamics is considerable. Gravity causes the vertical deflection of droplet trajectories and an increase in liquid water content (LWC) in the bottom half of the wind tunnel. Droplet collision tends to influence the size, trajectory and velocity of droplets thus affecting the characteristics of the flow and, thereby, the formation of ice on the object placed in the wind tunnel. The present model simulates droplet motion and droplet collision in an icing wind tunnel, where it may be observed that bouncing, stable coalescence, or coalescence followed by separation are the possible outcomes of collision. In the theoretical examination, firstly, the effect of gravity on the vertical deflection of droplet trajectories and on the vertical distribution of the LWC near the icing object are taken into account, while droplet collision is disregarded. Then both factors are considered and collision outcome is determined together with the size and velocity of post-collision droplets. The initial droplet size distribution (DSD), as it occurs at the nozzle outlet, is estimated by a curve in accordance with previous experimental results. The DSD is determined theoretically near the icing object, which makes it possible to calculate the median volume diameter and the LWC of the aerosol cloud. The simulation results with regard to the LWC are compared to the experimental results obtained in this research and a satisfactory qualitative coincidence is to be found between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号