首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
多沟槽水润滑橡胶合金轴承润滑特性研究   总被引:3,自引:0,他引:3  
建立了考虑多沟槽润滑结构和实际工况边界条件的水润滑橡胶合金轴承弹流润滑数学模型,数值计算了有无沟槽以及沟槽半径对润滑性能的影响.计算结果表明:沟槽对水润滑橡胶合金轴承润滑性能影响显著,即在沟槽处膜厚较大,压力较低,而在承载区膜厚较小,压力较高,周向方向上压力分布不连续,并且在最小膜厚处轴向方向的入口和出口附近出现了两个压力峰值;水膜压力和最小膜厚均随沟槽半径的增大而减小;承载能力随偏心率增大而增大,随沟槽半径和过渡圆弧半径的增大而减小;摩擦系数随转速增大而略有增大,随沟槽半径的增大显著增加.  相似文献   

2.
粗糙度纹理对有限长线接触混合润滑影响   总被引:2,自引:1,他引:1  
采用统一Reynolds方程建立有限长线接触混合润滑模型,研究横向、纵向和二维规则表面粗糙度的波长、幅值及工况变化对润滑影响.结果表明:波长、幅值与工况对三种表面粗糙度接触副的润滑影响类似;随着载荷增大,平均膜厚降低,摩擦系数、接触载荷比与接触面积比均增大;随着转速升高,平均膜厚增大,摩擦系数、接触载荷比与面积比均降低,其中摩擦系数随转速进一步增大而小幅升高.在润滑状态转换区域润滑特征参数变化显著,而其他润滑区域变化平缓.沿卷吸速度方向的压力与膜厚波动分布存在相位差,垂直方向则同相位;相同的工况和粗糙度参数时,纵向粗糙度分布更有利于接触润滑.  相似文献   

3.
滑动表面卷吸速度为零时的热弹流润滑分析   总被引:7,自引:4,他引:3  
提出了接触处两表面等速反向运动的圆柱间在一定条件下赤存在足够厚的稳态热弹流膜,此时固体表面呈现中凹状、且凹陷深度随勒荷的增加而增大,随表面速度的增加而减小。  相似文献   

4.
为了研究吸附膜的计入对热混合润滑性能的影响,基于平均流量模型,建立考虑吸附膜的非牛顿流体圆接触热混合润滑模型,分析吸附膜的影响,结果表明:表征吸附膜热失效机理的主要参数是油膜中层温度和吸附膜2表面温度;吸附膜对压力分布影响较小,但使油膜厚度减小;存在合适的吸附膜厚度,吸附膜厚度的最优值为100 nm;吸附膜会减小膜厚比、增大载荷比,且吸附膜越厚,膜厚比越小,载荷比越大,这表明吸附膜加重了两表面的接触,但减小了摩擦系数,起到较好的减摩作用.  相似文献   

5.
纳米薄膜润滑物理—数学模型及数值分析   总被引:6,自引:3,他引:3  
黄平 《摩擦学学报》2003,23(1):60-64
基于润滑剂分子通常具有链状结构的事实,在分析润滑剂分子链长同膜厚关系的基础上,建立了纳米薄膜润滑物理模型,并利用含旋转量的流体力学运动方程得到了相应的Reynolds方程,同时对薄膜润滑Reynolds方程进行了数值计算,以考察特征长度对薄膜润滑状态参数的影响。结果表明,同相应的厚膜解相比,薄膜模型中润滑剂的粘度及承载能力均明显提高,且其提高幅度随着特征长度的增大而增大。根据润滑剂分子链长度确定的薄膜润滑区间以及膜厚-速度关系数值解同相应的试验结果一致。  相似文献   

6.
基于最佳凸度量取值区间的概念,针对性能最优的对数轮廓滚子,提出了根据热弹流理论进行凸度设计的方法.使用该设计方法研究了对数滚子凸度量修正系数随工况参数的变化规律.定义了轴向膜厚分布系数和轴向压力分布系数,通过限制二者许用值的方法确保压力分布和膜厚分布的轴向均匀性,而轴向膜厚分布系数和轴向压力分布系数的许用值分别与最佳凸度量取值区间的下限和上限相对应.研究指出:轻载时凸度量修正系数的下限随载荷的增加而增加;重载时凸度量修正系数的下限随载荷的增加而趋于稳定,凸度量修正系数的上限随载荷的增加而增大;速度参数对最佳凸度量取值区间的影响不显著.  相似文献   

7.
针对点接触弹流润滑的粗糙度效应,建立了考虑表面粗糙度动态变化的点接触弹流润滑模型,实现了油膜厚度和压力分布的快速求解. 对点接触弹流润滑下的粗糙表面弹性变形进行了定性和定量研究,同时分析了表面均方根粗糙度、载荷、相对运动速度和滑滚比对最小膜厚和最大压力的影响,以及表面形貌动态变化对膜厚比的影响. 结果表明:形貌变化改变了弹流油膜和压力分布特性,相对于光滑表面,表面粗糙度总体上提高了最大接触压力、降低了最小膜厚,在轻载工况下表面粗糙度对油膜厚度的削弱更加显著,而不同速度下粗糙度的影响程度基本相同,呈现线性变化趋势,膜厚比随载荷增大呈现先增后减的变化趋势,并在530 MPa左右达到峰值.   相似文献   

8.
在自制的新型膜厚测量仪上,测量4010航空油在不同接触压力、温度和卷吸速度下的干涉图像,分析接触区的润滑特性。结果表明:在低温高速区主要表现为弹流润滑,中心膜厚与接触压力呈负相关;而在低温低速、高温区主要表现为薄膜润滑,中心膜厚受接触压力的影响较小。在弹流润滑区内高接触压力下油膜形状呈平坦状分布,而薄膜润滑区内油膜形状总体上比较平滑。随着载荷的增加,弹流润滑区内由Hamrock-Dowson理论算得的膜厚值和实测值逐渐偏离,理论公式中卷吸速度和载荷的指数需要调整;而薄膜润滑区的膜厚值基本上保持平稳。  相似文献   

9.
弹流润滑与薄膜润滑转化关系的研究   总被引:12,自引:8,他引:4  
采用NGY-2型纳米级膜厚测量仪,研究了润滑膜厚度与各工况因素之间的关系,分析了薄膜润滑的机理,探讨了膜厚、速度、润滑油粘度等各因素对弹流润滑与薄膜润滑之间转化的影响,建立了转化临界膜厚值与润滑剂表观粘度的关系。  相似文献   

10.
齿向修形对滤波减速器润滑性能的影响分析   总被引:3,自引:2,他引:1  
综合考虑了滤波减速器齿向修形参数、真实齿面粗糙度和瞬态效应等因素,建立了轮齿混合润滑数学模型,数值计算了不同修形参数值对应不同啮合点的最大压力和中心膜厚,分析了齿面粗糙度和转速对润滑性能的影响.结果表明:修形参数r和Ry均存在一个优化范围,使得轮齿表面最大油膜压力显著降低,边缘效应弱化,而中心膜厚则随着r和Ry的增大而逐渐增大;未修形轮齿边缘油膜压力受粗糙度的影响而急剧增大,边缘效应更加显著,修形后轮齿的边缘效应得到了明显改善,因此,轮齿修形也因粗糙表面的存在而显得更加重要;随着转速逐渐降低,轮齿表面的平均油膜厚度逐渐变小,接触比逐渐增大,轮齿表面由弹流润滑逐渐转为混合润滑,最后演变为边界润滑.  相似文献   

11.
韩文娟  刘海 《力学与实践》2010,32(4):109-111
对《力学》中的物体自由度进行多方面分析,以深化教学、提高学生正 确分析物理问题的能力.使用实际教学分析的研究方法,在《力学》范围内讨论自由度与坐标、 自由与约束的关系并得以下结论: (1) 同一物体的自由度随其所在的``空间'不同而不同, 不因坐标系的选取不同而 异, 在同类参考系中不因参考系的动静而有别;(2)自由度遵循叠加原理. 讨论了质点系的总自由度及相关计算问题,并指出研究《力学》中自由度的意义.  相似文献   

12.
两自由度振动系统的斜碰撞分析   总被引:3,自引:0,他引:3  
韩维  胡海岩  金栋平 《力学学报》2003,35(6):723-729
研究斜碰撞振动系统动力学的一个关键问题是对系统在碰撞前后的状态进行合理描述和正确计算.针对两弹性体斜碰撞问题,基于瞬间碰撞假设,提出了采用步进冲量来分析和求解斜碰撞前后的状态关系;并以弹簧摆和振子组成的两自由度斜碰撞振动系统为例,具体介绍了该算法如何实现.用解析方法讨论了该系统在斜碰撞过程中可能出现的各种力学现象,将冲量步进算法得到的数值解与解析结果进行对比,取得了完全一致的结果.该数值方法能适应多种斜碰撞问题的计算.  相似文献   

13.
CHARACTERISTICSOFSUBDIFFERENTIALSOFFUNCTIONS(郭兴明)CHARACTERISTICSOFSUBDIFFERENTIALSOFFUNCTIONS¥GuoXingming(ReceivedJune16,1995...  相似文献   

14.
1.IntroductionThestudyofoscillator}'behaviorofneutraldifferentialequationsisarelativealnewfieldandisveryinterestinginapplications.Inrecentyears.theoscillatorytheoryfortheseequationshasbeenextensivelydeveloped.WerefertotherecentbookbyGyoriandLadaSI'I,Baino…  相似文献   

15.
沙漠地貌演化过程的湍流大涡模拟研究   总被引:1,自引:1,他引:0  
采用大涡模拟和混合粒径群体沙粒运动算法结合内置边界方法来模拟沙波纹与沙丘的演化和发展,在平坦沙区形成沙波纹的同时,在沙丘上同样也出现了沙波纹的结构,即沙波纹的发展出现了多尺度现象.此外,还分析了粒径对沙波纹与沙丘自身形态演化和发展的影响,以及沙丘对平坦沙区沙波纹形成发展的作用.  相似文献   

16.
We consider the system of elastostatics for an elastic medium consisting of an imperfection of small diameter, embedded in a homogeneous reference medium. The Lamé constants of the imperfection are different from those of the background medium. We establish a complete asymptotic formula for the displacement vector in terms of the reference Lamé constants, the location of the imperfection and its geometry. Our derivation is rigorous, and based on layer potential techniques. The asymptotic expansions in this paper are valid for an elastic imperfection with Lipschitz boundaries. In the course of derivation of the asymptotic formula, we introduce the concept of (generalized) elastic moment tensors (Pólya–Szegö tensor) and prove that the first order elastic moment tensor is symmetric and positive (negative)-definite. We also obtain estimation of its eigenvalue. We then apply these asymptotic formulas for the purpose of identifying with high precision the order of magnitude of the diameter of the elastic inclusion, its location, and its elastic moment tensors.  相似文献   

17.
18.
SWT-120风洞稳定段的性能测量   总被引:1,自引:0,他引:1  
周勇为 《实验力学》2007,22(1):85-89
在普通超音速风洞中,由于受到噪声干扰,很难进行有效的边界层转捩特性试验研究,针对超声速流动特点发展较低噪声风洞十分必要,而稳定段设计的好坏直接影响到下游试验段噪声水平。本文介绍一座低噪声风洞稳定段的结构和性能测量结果。先对稳定段的结构设计做了简单介绍,然后对实验结果进行分析,实验结果表明在大角度扩散段内装置孔锥,稳定段安装消音夹层和阻尼网组等部件后,气流的速度脉动和压力脉动明显降低,其中压力脉动降低一个量级,速度脉动为1%。进一步优化设计和改进工艺,速度脉动还可进一步降低。测量结果表明SWT-120稳定段的设计是成功的,对我们以后发展更高性能的静风洞有借鉴和参考价值。  相似文献   

19.
贾彦武  张萌  周晓平  张勇勇  宋丽  武朋飞 《应用力学学报》2020,(2):866-872,I0028,I0029
以汉中市综合管廊为工程背景,通过有限元软件,首先模拟分析综合管廊早龄期温度场,随后将温度场结果附加到管廊结构中求解温度应力,从而分析综合管廊早龄期混凝土温度应力与浇筑长度的关系。模拟分析发现:综合管廊在混凝土浇筑早期,温度场沿长度方向变化不显著,且随着浇筑长度的增加,温度场不变;在墙体温度上升阶段,墙体内部沿长度方向的应力主要为压应力,当墙体混凝土内部温度达到最高,混凝土开始降温,结构内变形由膨胀逐渐变为收缩,内力由压应力逐渐变为拉应力,随着时间的变化,墙体内外温差趋于稳定,墙体温度应力也逐渐平稳,此时温度应力主要受外界环境变化影响;当综合管廊浇筑长度在60m范围内,浇筑长度越大,温度应力越大,但当浇筑长度超过60m,温度应力不再增加。  相似文献   

20.
A method is proposed for determining the stiffness and rheological characteristics of composite materials, which is based on minimizing the disagreement between experimental data and results of numerical simulations of deformation of hemispherical shells under explosive loading. The damping characteristics of randomly reinforced polymer materials are analyzed with the use of this method. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 3, pp. 126–133, May–June, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号