首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 158 毫秒
1.
泥沙颗粒受到的拖曳力是泥沙运动的主要驱动力,而当前应用于计算流体力学-离散颗粒法(CFD-DPM)耦合模型进行水沙运动模拟的泥沙颗粒拖曳力公式均没有考虑明渠流底床边壁作用的影响。求解不可压缩Navier-Stokes方程,对明渠层流不同雷诺数条件下床面附近不同高度处颗粒所受拖曳力进行了模拟,根据模拟结果变化规律,提出了综合考虑床面和水流惯性对标准拖曳力影响的修正拖曳力计算公式。与常用的单颗粒标准拖曳力公式和考虑遮蔽效应的多颗粒拖曳力公式相比,采用本文修正公式得到的水沙作用力更接近高精度数值解,应用于CFD-DPM输沙模拟获得的输沙结果与输沙率公式结果一致,应用分析表明输沙模拟应当采用粗糙底床边界。  相似文献   

2.
黄茅海波-流共同作用下的三维悬沙数值模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
针对黄茅海河口区波流相互作用显著、三维空间结构明显及泥沙运动复杂等特点,联合第3代海浪模式SWAN,建立了波流共同作用下的三维悬沙数学模型.在水流计算中,考虑了波浪产生的辐射应力影响,波浪依赖的表面风应力影响及波浪影响下的底部剪切应力,并采用k-kl紊流闭合模型提供垂向涡粘系数和垂向扩散系数.悬沙扩散方程中的源函数利用切应力法确定,泥沙沉降速度考虑絮凝作用,从而提高黄茅海悬沙场数值模拟精度.通过含沙量实测资料验证,模拟值与实测值符合较好.在模型验证的基础上,讨论了不考虑波浪与考虑波浪两种情况下黄茅海的悬沙分布特征,为工程实际研究提供了依据.  相似文献   

3.
局部冲刷的三维数值模拟可预测水力冲刷的破坏程度和破坏机制,进而提供更加合理的工程措施以减轻或避免局部冲刷造成的工程破坏。基于有限体积法和非结构化的计算网格构建了以水动力学模型、泥沙冲淤和河床变形方程为基础的三维局部冲刷数值模型。水动力学模型中的湍流模型为剪切应力SST k-ω输运模型,泥沙冲淤以底床切应力大小和分布为基础,水沙模型的耦合采用单向弱耦合方式。首先,通过ANSYS-FLUENT软件数值计算水动力学模型后,将水力特性数据单向传递至泥沙模块,并应用UDF函数二次开发实现泥沙模型的数值计算。利用动网格技术重构因河床地形更新引起的变形网格。与动床圆柱冲刷和丁坝局部冲刷的试验结果进行比较,验证了局部冲刷数值模型的可靠性。从平衡冲深时的冲刷深度和冲坑内水流特性等结果的对比可以看出,该数值模型成功地模拟出最终冲刷地形和形态,并能捕捉不同时刻的三维地形变化。根据数值模型的建立及应用结果分析主要得到以下结论,以切应力观点为基础开发该模型时,具有简易性和较强的可靠性;单元体泥沙通量的重构和床面坡度等因素均影响模型的精度;FLUENT软件提供的动网格技术能较好重构小变形网格,但是重构因地形变化引起的大变形网格时略显不足。  相似文献   

4.
细颗粒泥沙净冲刷和输移的大涡模拟研究   总被引:1,自引:1,他引:0  
在传统水沙输移数值模拟研究中一般采用雷诺时均模拟技术(Reynolds-averaged simulation,RANS).与RANS相比,大涡模拟技术(large eddy simulation,LES)能够更加精确反映细部流动结构,计算机的发展使得采用LES探讨水流和泥沙运动规律成为可能.本文尝试给出净冲刷条件下悬沙计算的边界条件,采用动态亚格子模式对循环槽道和长槽道中的水流运动和泥沙输移进行了三维大涡模拟研究.利用直接数值模拟(direct numerical simulation,DNS)结果对LES模型进行了率定,计算结果符合良好,在此基础上初步探讨了泥沙浓度、湍动强度和湍动通量等的分布特征.结果表明,净冲刷条件下输沙平衡时泥沙浓度符合Rouse公式分布,单向流动中泥沙浓度沿着流向逐渐增大.泥沙浓度湍动强度和湍动通量都在近底部达到最大值,沿着垂向迅速减小.湍动黏性系数和扩散系数基本上在水深中间处达到最大.湍动Schmidt数沿着水深方向不是常数,在近底部和自由水面附近较大,在水深中间处较小.  相似文献   

5.
河口混合与泥沙输运   总被引:8,自引:1,他引:7  
周济福  李家春 《力学学报》2000,32(5):523-531
根据振荡边界层理论和波流分解方法,导出了河口往复水流的流速垂向分布廓线,据此建立了河口垂向准二维水流、盐度、泥沙运动模型。对泥沙输运,完整地考虑了其对流、扩散、起动和沉降的动力学过程。模拟结果与实测资料进行了对比。应用该模型研究河口泥沙输运,分析了河口混合对泥沙输运的影响及最大浑浊带的时空变化规律。  相似文献   

6.
LBM-DEM耦合方法通常是指一种颗粒流体系统直接数值模拟算法,即是一种不引入经验曳力模型的计算方法,颗粒尺寸通常比计算网格的长度大一个量级,颗粒的受力通过表面的粘性力与压力积分获得,其优点是能描述每个颗粒周围的详细流场,产生详细的颗粒-流体相互作用的动力学信息,可以探索颗粒流体界面的流动、传递和反应的详细信息及两相相互作用的本构关系,但其缺点是计算量巨大,无法应用于真实流化床过程模拟。本文针对气固流化床中的流体以及固体颗粒间的多相流体力学行为,建立了一种稠密气固两相流的介尺度LBMDEM模型,即LBM-DEM耦合的离散颗粒模型,实现在颗粒尺度上流化床的快速离散模拟。该耦合模型采用格子玻尔兹曼方法(LBM)描述气相的流动和传递行为,离散单元法(DEM)用于描述颗粒相的运动,并利用能量最小多尺度(EMMS)曳力解决气固耦合不成熟问题,以提高其模拟精度。通过经典快速流态化的模拟,验证了介尺度LBM-DEM耦合模型的有效性。模拟结果表明介尺度LBM-DEM模型是一种探索实验室规模气固系统的有力手段。  相似文献   

7.
蔡少斌  杨永飞  刘杰 《力学学报》2021,53(8):2225-2234
为了研究深层油气资源在岩石多孔介质内的运移过程, 使用一种基于Darcy-Brinkman-Biot的流固耦合数值方法, 结合传热模型, 完成了Duhamel-Neumann热弹性应力的计算, 实现了在孔隙模拟多孔介质内的考虑热流固耦合作用的两相流动过程. 模型通过求解Navier-Stokes方程完成对孔隙空间内多相流体的计算, 通过求解Darcy方程完成流体在岩石固体颗粒内的计算, 二者通过以动能方式耦合的形式, 计算出岩石固体颗粒质点的位移, 从而实现了流固耦合计算. 在此基础上, 加入传热模型考虑温度场对两相渗流过程的影响. 温度场通过以产生热弹性应力的形式作用于岩石固体颗粒, 总体上实现热流固耦合过程. 基于数值模型, 模拟油水两相流体在二维多孔介质模型内受热流固耦合作用的流动过程. 研究结果表明: 热应力与流固耦合作用产生的应力方向相反, 使得总应力比单独考虑流固耦合作用下的应力小; 温度的增加使得模型孔隙度增加, 但当注入温差达到150 K后, 孔隙度不再有明显增加; 温度的增加使得水相的相对渗流能力增加, 等渗点左移.   相似文献   

8.
单颗泥沙运动力学及统计规律   总被引:1,自引:0,他引:1  
我们采用力学与概率论相结合的途径,对单颗泥沙运动进行了研究。1.单颗泥沙运动的机理和概化图形单颗泥沙具有静止、滚动、跳跃和悬浮四种运动状态。当水流强度不很大时,床面颗粒起动之后,常常是滚动。当水流强度较大,或具有一定速度的运动颗粒与床面颗粒碰撞后,产生了一定的竖向分速,颗粒就会离开床面,作短暂的跳跃。当水流强度很大时,在紊动水流的涡体携带下,泥沙颗粒可以在水中悬浮一定的距离。跳跃颗粒与滚动颗粒的区...  相似文献   

9.
针对CFD-DEM耦合计算中,颗粒计算时间步的选取影响颗粒碰撞计算精度和效率的问题。本文引入插值算法,将动量定理求解颗粒碰撞前后速度进行加权平均;根据弹性理论计算得到颗粒碰撞力,进行动力学方程求解;通过速度收敛准则修正初值速度并自动调整迭代求解次数,提出一种计算精度不受计算时间步长影响,无需对碰撞过程进行精细描述的高效率和高精度的加强硬球模型。对两个颗粒匀和变速碰撞算例进行数值模拟,碰撞后速度、碰撞力和碰撞时间与理论计算误差小于4%,与采用软球碰撞模型的DEM方法相比,颗粒碰撞计算精度不受计算时间步长影响,计算效率提高36.3%和36.8%。对单个颗粒在静水中沉降进行数值模拟,计算步长取10 s~5 s,颗粒与壁面即可得到精确解,计算效率提高33.5%。通过压力损失实验验证了该模型能够准确计算颗粒体积分数小于12%条件下两相流的压力损失。  相似文献   

10.
垂直轴自由变偏角水轮机的多体耦合数值求解方法   总被引:1,自引:0,他引:1  
基于达朗伯原理建立了自由变偏角水轮机结构动力学模型,并结合粘性CFD方法,形成了一种用于分析自由变偏角潮流能水轮机水动力特性的多体耦合数值计算方法.将该方法与试验及非耦合算法进行了对比分析,并研究了自启动、流速变化和负载变化对水轮机性能的影响规律.研究表明:本文建立的数值计算方法能够有效模拟自由变偏角水轮机在各种非定常过程中的运动特性和动力特性.  相似文献   

11.
The present study develops a 2‐D numerical scheme that combines the vortex method and the boundary integral method by a Helmholtz decomposition to investigate the interaction of water waves with submerged obstacles. Viscous effects and generation of vorticity on the free surface are neglected. The second kind of Fredholm integral equations that govern the strengths of vortex sheets along boundaries are solved iteratively. Vorticity is convected and diffused in the fluid via a Lagrangian vortex (blob) method with varying cores, using the particle strength exchange method for diffusion, with particle redistribution. A grid‐convergence study of the numerical method is reported. The inviscid part of the method and the simulation of the free‐surface motion are tested using two calculations: solitary wave propagation in a uniform channel and a moving line vortex in the fluid. Finally, the full model is verified by simulating periodic waves travelling over a submerged rectangular obstacle using nonuniform vortex blobs with a mapping of the redistribution lattice. Overall, the numerical model predicts the vortices' evolution and the free‐surface motion reasonably well. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

12.
The investigation of the bidirectional coupling between a fluid flow and a structure motion is a growing branch of research in science and industry. Applications of the so-called fluid–structure interactions (FSI) are widespread. To improve coupled numerical FSI simulations, generic experimental benchmark studies of the fluid and the structure are necessary. In this work, the coupling of a vortex-induced periodic deformation of a flexible structure mounted behind a rigid cylinder and a fully turbulent water flow performed at a Reynolds number of Re=30 470 is experimentally investigated with a planar particle image velocimetry (PIV) and a volumetric three-component velocimetry (V3V) system. To determine the structure displacements a multiple-point laser triangulation sensor is used. The three-dimensional fluid velocity results show shedding vortices behind the structure, which reaches the second swiveling mode with a frequency of about 11.2 Hz corresponding to a Strouhal number of St=0.177. Providing phase-averaged flow and structure measurements precise experimental data for coupled computational fluid dynamics (CFD) and computational structure dynamics (CSD) validations are available for this new benchmark case denoted FSI-PfS-2a. The test case possesses four main advantages: (i) the geometry is rather simple; (ii) kinematically, the rotation of the front cylinder is avoided; (iii) the boundary conditions are well defined; (iv) nevertheless, the resulting flow features and structure displacements are challenging from the computational point of view. In addition to the flow field and displacement data a PIV-based force calculation method is used to estimate the lift and drag coefficients of the moving structure.  相似文献   

13.
The aim of this work is to develop a well‐balanced finite‐volume method for the accurate numerical solution of the equations governing suspended sediment and bed load transport in two‐dimensional shallow‐water flows. The modelling system consists of three coupled model components: (i) the shallow‐water equations for the hydrodynamical model; (ii) a transport equation for the dispersion of suspended sediments; and (iii) an Exner equation for the morphodynamics. These coupled models form a hyperbolic system of conservation laws with source terms. The proposed finite‐volume method consists of a predictor stage for the discretization of gradient terms and a corrector stage for the treatment of source terms. The gradient fluxes are discretized using a modified Roe's scheme using the sign of the Jacobian matrix in the coupled system. A well‐balanced discretization is used for the treatment of source terms. In this paper, we also employ an adaptive procedure in the finite‐volume method by monitoring the concentration of suspended sediments in the computational domain during its transport process. The method uses unstructured meshes and incorporates upwinded numerical fluxes and slope limiters to provide sharp resolution of steep sediment concentrations and bed load gradients that may form in the approximate solutions. Details are given on the implementation of the method, and numerical results are presented for two idealized test cases, which demonstrate the accuracy and robustness of the method and its applicability in predicting dam‐break flows over erodible sediment beds. The method is also applied to a sediment transport problem in the Nador lagoon.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
15.
Results showing the dynamic response of a tandem arrangement of two vertical high aspect ratio (length over diameter) and low mass ratio (mass over mass of displaced fluid) flexible cylinders vibrating at low mode number are presented in this paper. Two circular cylinder models were aligned with the flow, so the downstream or trailing cylinder was immersed in the wake of the leading one. Centre-to-centre distances from 2 to 4 diameters were studied. The models were very similar in design, with external diameters of 16 mm and a total length of 1.5 m. Reynolds numbers up to 12 000 were achieved with reduced velocities, based on the fundamental natural frequency of the downstream cylinder in still water, up to 16. The trailing model had a mass ratio of 1.8 with a combined mass-damping parameter of 0.049, whilst the corresponding figures for the leading cylinder were 1.45 and 0.043, respectively. The dynamic response of the trailing model has been analysed by studying cross-flow and in-line amplitudes, dominant frequencies and modal amplitudes. The dynamic response of the leading one is analysed by means of its cross-flow amplitudes and dominant frequencies and it is also related to the motion of the trailing cylinder by studying the synchronisation between their instantaneous cross-flow motions. Planar digital particle image velocimetry (DPIV) was used to visualise the wake. Different response regimes have been identified based on the type of oscillations exhibited by the cylinders: vortex-induced (VIV), wake-induced (WIV) or combinations of both.  相似文献   

16.
环境水动力学中, 湖库底泥中污染物释放是人们研究的主要问题之一. 在水动力学条件作用下, 污染底泥再悬浮使大量污染物被重新释放出来, 造成水体的二次污染. 本文基于水槽实验研究提供的大量实测数据, 建立上覆水体-底泥-污染物的耦合力学模型. 在上覆水体不同流速条件下, 数值模拟底泥起动再悬浮过程以及污染物释放过程. 分析流场特性和污染物浓度之间的关系, 得到速度、颗粒体积分数、污染物浓度、湍动能以及时间等参数之间的定量关系. 研究表明, 底泥再悬浮污染物释放过程, 是由上覆水体-底泥-污染物构成的耦合过程. 迅速进入上覆水体的底泥颗粒, 影响了上覆水体流动特性, 进而影响到污染物的释放. 对于非吸附性污染物, 底泥起动后复杂的流场特性是底泥再悬浮污染物释放的主要影响因素. 当流场特性(如雷诺数)改变时, 对流和湍流扩散作用在污染物输运过程贡献不同. 建立上覆水体-底泥-污染物的耦合模型, 研究水动力学条件与底泥污染物释放规律的定量化关系, 可为构建湖库区域水污染模型提供支撑.   相似文献   

17.
In this paper, we present a model for the dynamics of particles suspended in two‐phase flows by coupling the Cahn–Hilliard theory with the extended finite element method (XFEM). In the Cahn–Hilliard model the interface is considered to have a small but finite thickness, which circumvents explicit tracking of the interface. For the direct numerical simulation of particle‐suspended flows, we incorporate an XFEM, in which the particle domain is decoupled from the fluid domain. To cope with the movement of the particles, a temporary ALE scheme is used for the mapping of field variables at the previous time levels onto the computational mesh at the current time level. By combining the Cahn–Hilliard model with the XFEM, the particle motion at an interface can be simulated on a fixed Eulerian mesh without any need of re‐meshing. The model is general, but to demonstrate and validate the technique, here the dynamics of a single particle at a fluid–fluid interface is studied. First, we apply a small disturbance on a particle resting at an interface between two fluids, and investigate the particle movement towards its equilibrium position. In particular, we are interested in the effect of interfacial thickness, surface tension, particle size and viscosity ratio of two fluids on the particle movement towards its equilibrium position. Finally, we show the movement of a particle passing through multiple layers of fluids. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
定床弯道内水沙两相运动的数值模拟   总被引:1,自引:0,他引:1  
在适体同位网格中采用非正交曲线坐标系下的三 维k-ε-kp固液两相双流体湍流模型研究弯道内水流和悬浮泥沙运动,主要计算了试验室S 型水槽内清水流动的三维流场、120°弯道内水沙两相流动中底沙与底流的运动轨迹以及 S型水槽内水沙两相流动的两相流场和泥沙浓度场. 对于S型水槽内清水流动,数值结果与 试验结果吻合良好. 120°弯道内水沙两相流动中固液两相的运动轨迹在弯道直线段基本 重合,在弯道内泥沙轨迹逐步偏离水体轨迹,其偏离程度随泥沙粒径增大而增大. 从S型水 槽内水沙两相流动计算结果中发现泥沙纵向流速在壁面附近比水流纵向速度大,在远离壁面 区域比水流纵向速度小;弯道内泥沙横向流速比水流横向流速小;垂向流速在直线段和泥沙 沉速相当,在弯道内受螺旋水流影响而变化;两相流速差别随泥沙粒径增大而变大;泥沙浓 度呈现下浓上稀的分布,在弯道内横向断面上呈现凸岸大凹岸小的分布,泥沙浓度随泥沙粒 径增大而减小.  相似文献   

19.
NUMERICAL SIMULATION OF WIND-BLOWN SAND MOVEMENT BASED ON SPH   总被引:1,自引:0,他引:1  
运用光滑粒子流体动力学(smoothed particles hydrodynamics, SPH)方法对沙粒和气流的相互耦合运动特性进行了分析,研究提出了风沙流的SPH数值方法并进行了数值模拟. 首先提出了风沙流的SPH建模方法和基本理论,建立了风沙流动的SPH数值模拟平台. 其次通过建立风沙流的SPH 模型并施加边界条件,对自然风作用下沙粒的运动情况进行了数值模拟,详细分析了沙粒运动轨迹及特性,最后通过与相关研究成果对比分析,验证了完善后的SPH方法有效性. 通过考虑气流场的可变性,在风沙流SPH计算模型中引入了加载(起风)和卸载(停风)方式,观察并对比分析了沙粒的运动轨迹和特性. 为进一步研究风沙流的实时动态非线性行为提供了SPH理论基础和数值分析方法.  相似文献   

20.
This paper presents a computational model for free surface flows interacting with moving rigid bodies. The model is based on the SPH method, which is a popular meshfree, Lagrangian particle method and can naturally treat large flow deformation and moving features without any interface/surface capture or tracking algorithm. Fluid particles are used to model the free surface flows which are governed by Navier–Stokes equations, and solid particles are used to model the dynamic movement (translation and rotation) of moving rigid objects. The interaction of the neighboring fluid and solid particles renders the fluid–solid interaction and the non‐slip solid boundary conditions. The SPH method is improved with corrections on the SPH kernel and kernel gradients, enhancement of solid boundary condition, and implementation of Reynolds‐averaged Navier–Stokes turbulence model. Three numerical examples including the water exit of a cylinder, the sinking of a submerged cylinder and the complicated motion of an elliptical cylinder near free surface are provided. The obtained numerical results show good agreement with results from other sources and clearly demonstrate the effectiveness of the presented meshfree particle model in modeling free surface flows with moving objects. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号