首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This article presents closed-form solutions for the frequency analysis of rectangular functionally graded material(FGM) thin plates subjected to initially in-plane loads and with an elastic foundation. Based on classical thin plate theory, the governing differential equations are derived using Hamilton's principle. A neutral surface is used to eliminate stretching–bending coupling in FGM plates on the basis of the assumption of constant Poisson's ratio. The resulting governing equation of FGM thin plates has the same form as homogeneous thin plates. The separation-ofvariables method is adopted to obtain solutions for the free vibration problems of rectangular FGM thin plates with separable boundary conditions, including, for example, clamped plates. The obtained normal modes and frequencies are in elegant closed forms, and present formulations and solutions are validated by comparing present results with those in the literature and finite element method results obtained by the authors. A parameter study reveals the effects of the power law index n and aspect ratio a/b on frequencies.  相似文献   

2.
The method of double Fourier transform was employed in the analysis of the semi-infinite elastic foundation with vertical load.And an integral representations for the displacements of the semi-infinite elastic foundation was presented.The analytical solution of steady vibration of an elastic rectangle plate with four free edges on the semi-infinite elastic foundation was also given by combining the analytical solution of the elastic rectangle plate with the integral representation for displacements of the semi- infinite elastic foundation.Some computational results and the analysis on the influence of parameters were presented.  相似文献   

3.
The theoretic solution for rectangular thin plate on foundation with four edges free is derived by symplectic geometry method. In the analysis proceeding, the elastic foundation is presented by the Winkler model. Firstly, the basic equations for elastic thin plate are transferred into Hamilton canonical equations. The symplectic geometry method is used to separate the whole variables and eigenvalues are obtained simultaneously. Finally, according to the method of eigen function expansion, the explicit solution for rectangular thin plate on foundation with the boundary conditions of four edges frees are developed. Since the basic elasticity equations of thin plate are only used and it is not need to select the deformation function arbitrarily. Therefore, the solution is theoretical and reasonable. In order to show the correction of formulations derived, a numerical example is given to demonstrate the accuracy and convergence of the current solution.  相似文献   

4.
In this paper,the modified iteration method is successfully extended to investigate thenonlinear free vibration of corrugated circular plates with full corrugations.The analyticalrelation for the amplitude-frequency response of corrugated circular plates is obtained anddiscussions on the influences of geometrical parameters on vibration behaviours ofcorrugated circular plates are made.The present results are practically important in thedesign of elastic elements in precision instruments.  相似文献   

5.
In the theory of elastic thin plates, the bending of a rectangular plate on the elastic foundation is also a difficult problem. This paper provides a rigorous solution by the method of superposition. It satisfies the differential equation, the boundary conditions of the edges and the free corners. Thus we are led to a system of infinite simultaneous equations. The problem solved is for a plate with a concentrated load at its center. The reactive forces from the foundation should be made to be in equilibrium with the concentrated force to see whether our calculation is correct or not.  相似文献   

6.
The general bending problem of conical shells on the elastic foundation (Winkler Medium) is not solved. In this paper, the displacement solution method for this problem is presented. From the governing differential equations in displacement form of conical shell and by introducing a displacement function U(s,θ), the differential equations are changed into an eight-order soluble partial differential equation about the displacement function U(s,θ) in which the coefficients are variable. At the same time, the expressions of the displacement and internal force components of the shell are also given by the displacement function U(s θ). As special cases of this paper, the displacement function introduced by V.S. Vlasov in circular cylindrical shell[5], the basic equation of the cylindrical shell on the elastic foundation and that of the circular plates on the elastic foundation are directly derived.Under the arbitrary loads and boundary conditions, the general bending problem of the conical shell on the elastic foundation is reduced to find the displacement function U(s,θ).The general solution of the eight-order differential equation is obtained in series form. For the symmetric bending deformation of the conical shell on the elastic foundation, which has been widely usedinpractice,the detailed numerical results and boundary influence coefficients for edge loads have been obtained. These results have important meaning in analysis of conical shell combination construction on the elastic foundation,and provide a valuable judgement for the numerical solution accuracy of some of the same type of the existing problem.  相似文献   

7.
This paper deals with the nonlinear forced vibration of FGM rectangular plate with a boundary of two edges clamped opposite and the other two free. The plate is subjected to transversal and in-plane excitations. The present research treats the material properties of the FGM plates as temperature-dependent and graded continuously throughout the thickness direction, following the volume fraction of the constituent materials according to the power law. The temperature is assumed to be constant in the plane and varied only in the thickness direction of the plate. In the framework of geometrical nonlinearity the plate is modeled and the equations of motion are obtained on Hamilton's principle. With the help of Galerkin discretization, the nonlinear ordinary differential equations describing transverse vibration of the plate are proposed. By the numerical method, the nonlinear dynamical responses of the FGM plate with two clamped opposite and two free edges are analyzed.  相似文献   

8.
In this paper, a general analytical method—space variable transform method is presented for solving free vibration problems of thick cylindrical shell with arbitrary boundary conditions. Free vibration characteristics of cantilever thick cylindrical shell are cvaluated by the presented method, and the numerical results are compared with the corresponding results of thin shell theory and experimental values. Theoretical analysis and calculating results show that the method presented in this paper has good convergence and aecuracy and can be extended to analyze free vibration of beams, plates and shells.  相似文献   

9.
The present study deals with free vibration analysis of variable thickness viscoelastic circular plates made of heterogeneous materials and resting on two-parameter elastic foundations in addition to their edge conditions.It is assumed that the viscoelastic material properties vary in the transverse and radial directions simultaneously.The complex modulus approach is employed in conjunction with the elastic-viscoelastic correspondence principle to obtain the solution.The governing equations are solved by means of a power series solution.Finally,a sensitivity analysis including evaluation of effects of various edge conditions,thickness variations,coefficients of the elastic foundation,and material loss factor and heterogeneity on the natural frequencies and modal loss factors is accomplished.  相似文献   

10.
This paper further extends the applications of the reciprocal theorem to calculating thenatural frequencies of rectangular elastic thin plates on the basis of [1]. Applying thepresented method. there is no need to solve governing differential equations. it is onlynecessary to solve a simple integral equation after using the reciprocal theorem between thebasic system and the actual system.Using the idea of the generalized edge simply supported and introducing the frequencymatrix. then all frequency equations of the rectangular plates with two opposite edgessimply supported and other two opposite edges variously suppored are obtained together.This is a simple convenient and general method for calculating the frequencyequations of the rectangular plates.  相似文献   

11.
The probability density function for transient response of non-linear stochastic system is investigated through the stochastic averaging and Mellin transform. The stochastic averaging based on the generalized harmonic functions is adopted to reduce the system dimension and derive the one-dimensional Itô stochastic differential equation with respect to amplitude response. To solve the Fokker–Plank–Kolmogorov equation governing the amplitude response probability density, the Mellin transform is first implemented to obtain the differential relation of complex fractional moments. Combining the expansion form of transient probability density with respect to complex fractional moments and the differential relations at different transform parameters yields a set of closed-form first-order ordinary differential equations. The complex fractional moments which are determined by the solution of the above equations can be used to directly construct the probability density function of system response. Numerical results for a van der Pol oscillator subject to stochastically external and parametric excitations are given to illustrate the application, the convergence and the precision of the proposed procedure.  相似文献   

12.
General exact solutions in terms of wavelet expansion are obtained for multi- term time-fractional diffusion-wave equations with Robin type boundary conditions. By proposing a new method of integral transform for solving boundary value problems, such fractional partial differential equations are converted into time-fractional ordinary differ- ential equations, which are further reduced to algebraic equations by using the Laplace transform. Then, with a wavelet-based exact formula of Laplace inversion, the resulting exact solutions in the Laplace transform domain are reversed to the time-space domain. Three examples of wave-diffusion problems are given to validate the proposed analytical method.  相似文献   

13.
李忠学  邓长根 《力学季刊》1999,20(2):112-117
本文对任意空间杆系结构进行非线性动力稳定性分析。  相似文献   

14.
建立描述SHPB实验中线性粘弹性试件内部应力波传播的控制方程组,根据试件两端与入射杆及透射杆接触的应力波特征关系给出耦合边界条件.对方程组和定解条件进行Laplace变换,求得试件内部应力在变换域像函数的表达式.采用数值反变换技术进行反Laplace变换,获得试件两端的应力时程曲线.对现有的固定Tal-bot反变换算法进行改进:将入射波像函数分解为基本部分和延迟部分,利用固定Talbot算法对基本部分入射波作用下的波动问题求解,其他部分的解通过延迟定理得到,最终解为两部分的叠加.采用这种改进算法得到的不同入射波下粘弹性试件的内部应力解与传统的基于特征线数值模拟方法的结果吻合.在此基础上探讨了粘弹性试件的几何参数和材料本构参数对透射波波形的影响.  相似文献   

15.
An enhanced differential transform method (EDTM), which introduces the Padé technique into the standard differential transform method (DTM), is proposed. The enhanced method is applied to the analytic treatment of the shock wave. It accelerates the convergence of the series solution and provides an exact power series solution.  相似文献   

16.
层状饱和土Biot固结问题状态空间法   总被引:7,自引:1,他引:6  
针对饱和多孔介质空间非轴对Biot固结问题,引入状态变量,构造了两组相比独立的状态变量方程,利用Fourier级数和Laplace-Hankel变换,将状态变量方程转换为两组一阶常微分方程组,提出了均质饱和多孔介质空间非轴对称Biot固结问题的传递矩阵,得到以状态变量和传递矩阵乘积的形式表示的均质饱和多孔介质空间非轴对称Biot固结问题的解,利用层间完全接触的条件,可得到N层饱和多孔介质空间非轴对称Biot固结问题的一般解析表达式,文中考虑几种不同的边界条件,分析了两个算例,数值结果表明该方法具有较高的计算精度和良好的计算稳定性。  相似文献   

17.
基于Euler-Bernoulli梁理论,利用广义Hamilton原理推导得到弹性地基上转动功能梯度材料(FGM)梁横向自由振动的运动控制微分方程并进行无量纲化,采用微分变换法(DTM)对无量纲控制微分方程及其边界条件进行变换,计算了弹性地基上转动FGM梁在夹紧-夹紧、夹紧-简支和夹紧-自由三种边界条件下横向自由振动的无量纲固有频率,再将控制微分方程退化到无转动和地基时的FGM梁,计算其不同梯度指数时第一阶无量纲固有频率值,并和已有文献的FEM和Lagrange乘子法计算结果进行比较,数值完全吻合。计算结果表明,三种边界条件下FGM梁的无量纲固有频率随无量纲转速和无量纲弹性地基模量的增大而增大;在一定无量纲转速和无量纲弹性地基模量下,FGM梁的无量纲固有频率随着FGM梯度指数的增大而减小;但在夹紧-简支和夹紧-自由边界条件下,一阶无量纲固有频率几乎不变。  相似文献   

18.
The fractional calculus approach in the constitutive relationship model of viscoelastic fluid was introduced. The velocity and temperature fields of the vortex flow of a generalized second fluid with fractional derivative model were described by fractional partial differential equations. Exact analytical solutions of these differential equations were obtained by using the discrete Laplace transform of the sequential fractional derivatives and generalized Mittag-Leffier function. The influence of fractional coefficient on the decay of vortex velocity and diffusion of temperature was also analyzed.  相似文献   

19.
In this article, the multi-step differential transform method (MsDTM) is applied to give approximate solutions of nonlinear ordinary differential equation such as fractional-non-linear oscillatory and vibration equations. The results indicate that the method is very effective and sufficient for solving nonlinear differential equations of fractional order.  相似文献   

20.
In this article, primarily a brief discussion about the formulation of unsaturated soils including the equilibrium, air and moisture transfer equations is presented. Then the closed form two-dimensional Green’s functions of the governing differential equations for an unsaturated deformable porous medium with linear elastic behavior for a symmetric polar domain in both Laplace transform and time domains have been introduced, for the first time. Using the linear form of the governing differential equations and considering the effects of non-linearity of the governing equations, the Green’s functions have been derived exactly and verified in both Laplace transform and time domains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号