首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The results of an experimental investigation of the hydraulic resistance of a circular pipe for turbulent flow with periodic flow rate fluctuations are presented. The presence of resonance phenomena in the pipe is revealed. It is established that, for hydrodynamic nonstationarity, the pipe resistance is a nonmonotonous function of the frequency of the imposed flow rate fluctuations and differs from the pipe resistance in the stationary flow regime. Under the conditions considered, to find the pipe resistance it is necessary to take into account the variation of the flow kinetic energy with respect to the phase of the imposed flow rate fluctuations due to the deformation of the velocity profile.  相似文献   

2.
The results of direct numerical simulation of turbulent flows of non-Newtonian pseudoplastic fluids in a straight pipe are presented. The data on the distributions of the turbulent stress tensor components and the shear stress and turbulent kinetic energy balances are obtained for steady turbulent flows at the Reynolds numbers of 104 and 2×104. As distinct from Newtonian fluid flows, the viscous shear stresses turn out to be significant even far from the wall. In power-law fluid flows the mechanism of the energy transport from axial to transverse component fluctuations is suppressed. It is shown that with decrease in the fluid index the turbulent transfer of the momentum and the velocity fluctuations between the wall layer and the flow core reduces, while the turbulent energy flux toward the wall increases. The earlier-proposed models for the average viscosity and the non-Newtonian one-point correlations are in good agreement with the data of direct numerical simulation.  相似文献   

3.
In this paper we report on (two-component) LDV experiments in a fully developed turbulent pipe flow with a drag-reducing polymer (partially hydrolyzed polyacrylamide) dissolved in water. The Reynolds number based on the mean velocity, the pipe diameter and the local viscosity at the wall is approximately 10000. We have used polymer solutions with three different concentrations which have been chosen such that maximum drag reduction occurs. The amount of drag reduction found is 60–70%. Our experimental results are compared with results obtained with water and with a very dilute solution which exhibits only a small amount of drag reduction. We have focused on the observation of turbulence statistics (mean velocities and turbulence intensities) and on the various contributions to the total shear stress. The latter consists of a turbulent, a solvent (viscous) and a polymeric part. The polymers are found to contribute significantly to the total stress. With respect to the mean velocity profile we find a thickening of the buffer layer and an increase in the slope of the logarithmic profile. With respect to the turbulence statistics we find for the streamwise velocity fluctuations an increase of the root mean square at low polymer concentration but a return to values comparable to those for water at higher concentrations. The root mean square of the normal velocity fluctuations shows a strong decrease. Also the Reynolds (turbulent) shear stress and the correlation coefficient between the stream wise and the normal components are drastically reduced over the entire pipe diameter. In all cases the Reynolds stress stays definitely non-zero at maximum drag reduction. The consequence of the drop of the Reynolds stress is a large polymer stress, which can be 60% of the total stress. The kinetic-energy balance of the mean flow shows a large transfer of energy directly to the polymers instead of the route by turbulence. The kinetic energy of the turbulence suggests a possibly negative polymeric dissipation of turbulent energy. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
This study analyses the mixing and thermal fluctuations induced in a mixing tee junction with circular cross-sections when cold water flowing in a pipe is joined by hot water from a branch pipe. This configuration is representative of industrial piping systems in which temperature fluctuations in the fluid may cause thermal fatigue damage on the walls. Implicit large-eddy simulations (LES) are performed for equal inflow rates corresponding to a bulk Reynolds number Re = 39,080. Two different thermal boundary conditions are studied for the pipe walls; an insulating adiabatic boundary and a conducting steel wall boundary. The predicted flow structures show a satisfactory agreement with the literature. The velocity and thermal fields (including high-order statistics) are not affected by the heat transfer with the steel walls. However, predicted thermal fluctuations at the boundary are not the same between the flow and the solid, showing that solid thermal fluctuations cannot be predicted by the knowledge of the fluid thermal fluctuations alone. The analysis of high-order turbulent statistics provides a better understanding of the turbulence features. In particular, the budgets of the turbulent kinetic energy and temperature variance allows a comparative analysis of dissipation, production and transport terms. It is found that the turbulent transport term is an important term that acts to balance the production. We therefore use a priori tests to evaluate three different models for the triple correlation.  相似文献   

5.
This paper addresses a distinct and direct computational technique for calculating the characteristics of a thermally developed turbulent pipe flow in a circular pipe. The technique seeks to replace a partial differential energy equation into an equivalent ordinary differential energy equation. The latter is valid in the thermally developed region of the pipe. Numerical results show good agreement with experimental observations for gas and water flows over a wide range of Reynolds numbers.  相似文献   

6.
An innovative approach which combines high order compact schemes, Immersed Boundary Method and an efficient domain decomposition method is used to perform high fidelity Direct Numerical Simulations (DNS) of four spatially evolving turbulent flows, one generated by a regular grid and three generated by fractal square grids. The main results which we have been able to obtain from these simulations are the following: the vorticity field appears more clustered when generated by fractal square grids compared to a regular grid; fractal square grids generate higher vorticities and turbulence intensities than a regular grid; the flow holds clear geometrical imprints of the fractal grids far downstream, a property which could be used in the future for flow design, management and passive control; the DNS obtained with fractal grids confirmed the existence of two turbulent regions, one where the turbulence progressively amplifies closer to the grid (the production region) followed by one where the turbulence decays; the energy spectra of fluctuating turbulent velocities at various locations in the production region of the flow provide some information on how the turbulence is generated at the smallest scales first near the grid where the smallest wakes are dominant, followed by progressively smaller turbulent frequencies further downstream where progressively larger wakes interact.  相似文献   

7.
A hierarchical structure (HS) analysis (β-test and γ-test) is applied to a fully developed turbulent pipe flow. Velocity signals are measured at two cross sections in the pipe and at a series of radial locations from the pipe wall. Particular attention is paid to the variation of turbulent statistics at wall units 10<y+<3000. It is shown that at all locations the velocity fluctuations satisfy the She–Leveque hierarchical symmetry (Phys. Rev. Lett. 72 (1994) 336). The measured HS parameters, β and γ, are interpreted in terms of the variation of fluid structures. Intense anisotropic fluid structures generated near the wall appear to be more singular than the most intermittent structures in isotropic turbulence and appear to be more outstanding compared to the background fluctuations; this yields a more intermittent velocity signal with smaller γ and β. As turbulence migrates into the logarithmic region, small-scale motions are generated by an energy cascade and large-scale organized structures emerge which are also less singular than the most intermittent structures of isotropic turbulence. At the center, turbulence is nearly isotropic, and β and γ are close to the 1994 She–Leveque predictions. A transition is observed from the logarithmic region to the center in which γ drops and the large-scale organized structures break down. We speculate that it is due to the growing eddy viscosity effects of widely spread turbulent fluctuations in a similar way as in the breakdown of the Taylor vortices in a turbulent Couette–Taylor flow at high Reynolds numbers.  相似文献   

8.
In this study a method of equidistribution of a weight function for grid adaption is modified to produce a smoother grid which yields a more accurate solution. In the original scheme the weight function was estimated on each grid independently and a large variation in the values of the, weight function could generate a highly skewed and non-uniform grid which produced large errors. In this study the weight function is smoothed by coupling neighbouring weight functions. Abrupt changes in the weight function are alleviated and a smoother grid distribution is obtained. With relatively minor modifications of the original weight function it is demonstrated in this study that the solution can be improved. The test cases presented are the one-dimensional convection-diffusion equation, a laminar polar cavity flow, a laminar backwardfacing step flow and a turbulent reacting sudden expansion pipe flow. Numerical efficiencies ranging from factors of five to 10 are achieved over uniform grid methods.  相似文献   

9.
Agglomerate aerosols in a turbulent flow may be subjected to very high turbulent shear rates which through the generation of lift and drag can overcome the adhesive forces binding the constituents of an agglomerate together and cause it to break-up. This paper presents an analysis of the experimental measurements of the breakup of agglomerates between 0.1?C10???m in size, in a turbulent pipe flow followed by an expansion zone with a Reynolds numbers in the range 105 to 107. The analysis shows that even in wall bounded turbulence, the high turbulent shear stresses associated with the small scales of turbulence in the core can be the main source of breakup preceding any break-up that may occur by impaction at the wall. More importantly from these results, a computationally fast and efficient solution is obtained for the General Dynamic Equation (GDE) for agglomerate transport and breakup in highly turbulent flow. Furthermore the solution for the evolution of the aerosol size distribution is consistent with the experimental results. In the turbulent pipe flow section, the agglomerates are exposed continuously to turbulent shear stresses and experience more longer term breakup than in the expansion zone (following the pipe flow) where the exposure time is much less and break-up occurs instantaneously under the action of very high local turbulent shear stresses. The validity of certain approximations made in the model is considered. In particular, the inertia of the agglomerates characterised by a Stokes Number from 0.001 for the smallest particles up to 10 for 10???m particles and the fluctuations of the turbulent shear stresses are important physical phenomena which are not accounted for in the model.  相似文献   

10.
Within the framework of the complete Navier-Stokes equations the turbulent flow in a pipe of elliptical cross-section with semiaxis ratio b/a = 0.5 is directly calculated for the Reynolds number Re = 6000 determined from the mean-flow velocity and the hydraulic diameter. The distribution of the average and pulsatory flow characteristics over the pipe cross-section are obtained. In particular, the secondary flow in the cross-section plane, typical of turbulent flows in noncircular pipes, is calculated. The equation for the longitudinal vorticity which determines the shape and intensity of the secondary flow is analyzed. In the balance equation for the pulsation kinetic energy the behavior of all the terms that characterize energy production, dissipation and redistribution over the pipe cross-section is described.  相似文献   

11.
A hybrid dynamic subgrid-scale model (HDSM) pertaining to Large-eddy simulation (LES) has been developed. The coefficient obtained by German dynamic Smagorinsky model (DSM) was integrated with a new dynamic coefficient, based on the dynamic subgrid characteristic length and controlled by the subgrid-scale (SGS) motions. In HDSM, the characteristic wave number determining the characteristic length of the dynamic subgrid is calculated from a new energy weighted mean method when the subgrid scale turbulent kinetic energy and the dissipation wave number are known. The dissipation wave-number is derived from the SGS turbulent kinetic energy spectrum equation. The total dissipation rate spectrum equation is based on the Pao energy spectrum and local equilibrium assumption. The dynamic subgrid characteristic length could take into account the rapidly fluctuating small scale behaviours and the spatial variation of turbulent characteristics. HDSM was used to simulate the fully developed channel and turbulent flow past a circular cylinder, and to determine the impact of the dam-break flow on downstream structure. The HDSM is robust in respect to anisotropic mesh and is less sensitive to grid resolution, and would accurately describe the energy transfer from large-scale to SGS fluctuations and capture more fluctuations of turbulence with same meshes compared to the DSM.  相似文献   

12.
A speckle photographic method, which is sensitive to changes of gradients in fluid density, is applied for analyzing a compressible turbulent air flow with density fluctuations. Spatial correlation coefficients, turbulent length scales, and energy spectra are determined under the assumption of homogeneous isotropic turbulence. The experiments are performed in a shock tube where the flow is passed through a turbulence grid. Measurements are taken before and after the turbulent regime interacts with the normal shock wave reflected from the tube's end wall. Amplification of the turbulence intensity by the shock interaction process is verified quantitatively and is shown to be restricted to the lower wave numbers in the spectrum.A version of this paper was presented at the 11th Symposium on Turbulence, University of Missouri-Rolla, Oct. 17–19, 1988.To Professor Dr.-Ing. Klaus Gersten on the occasion of his 60th birthday  相似文献   

13.
The influence of the inlet flow formation mode on the steady flow regime in a circular pipe has been investigated experimentally. For a given inlet flow formation mode the Reynolds number Re* at which the transition from laminar to turbulent steady flow occurred was determined. With decrease in the Reynolds number the difference between the resistance coefficients for laminar and turbulent flows decreases. At a Reynolds number approximately equal to 1000 the resistance coefficients calculated from the Hagen-Poiseuille formula for laminar steady flow and from the Prandtl formula for turbulent steady flow are equal. Therefore, we may assume that at Re > 1000 steady pipe flow can only be laminar and in this case it is meaningless to speak of a transition from one steady pipe flow regime to the other. The previously published results [1–9] show that the Reynolds number at which laminar goes over into turbulent steady flow decreases with increase in the intensity of the inlet pulsations. However, at the highest inlet pulsation intensities realized experimentally, turbulent flow was observed only at Reynolds numbers higher than a certain value, which in different experiments varied over the range 1900–2320 [10]. In spite of this scatter, it has been assumed that in the experiments a so-called lower critical Reynolds number was determined, such that at higher Reynolds numbers turbulent flow can be observed and at lower Reynolds numbers for any inlet perturbations only steady laminar flow can be realized. In contrast to the lower critical Reynolds number, the Re* values obtained in the present study, were determined for given (not arbitrary) inlet flow formation modes. In this study, it is experimentally shown that the Re* values depend not only on the pipe inlet pulsation intensity but also on the pulsation flow pattern. This result suggests that in the previous experiments the Re* values were determined and that their scatter is related with the different pulsation flow patterns at the pipe inlet. The experimental data so far obtained are insufficient either to determine the lower critical Reynolds number or even to assert that this number exists for a pipe at all.  相似文献   

14.
A turbulent temperature field is produced in the gas flow downstream of a turbulence grid by passing the flow through a plane combustion front at the grid that serves as a flame holder. RMS values of the temperature fluctuations of up to 33 K are generated thereby. Properties of the turbulent scalar are measured with an optical speckle technique. The experimental results are compared with theoretical models described by Rotta (1972) and Driscoll and Kennedy (1985). From this comparison it is evident that, even at these high fluctuation amplitudes, the turbulent temperature field still behaves as a passive scalar.  相似文献   

15.
Large-Eddy-Simulation of turbulent heat transfer for water flow in rotating pipe is performed, for various rotation ratios (0 ≤ N ≤ 14). The value of the Reynolds number, based on the bulk velocity and pipe diameter, is Re = 5,500. The aim of this study is to examine the effect of the rotating pipe on the turbulent heat transfer for water flow, as well as the reliability of the LES approach for predicting turbulent heat transfer in water flow. Some predictions for the case of non-rotating pipe are compared to the available results of literature for validation. To depict the influence of the rotation ratio on turbulent heat transfer, many statistical quantities are analyzed (distributions of mean temperature, rms of fluctuating temperature, turbulent heat fluxes, higher-order statistics). Some contours of instantaneous temperature fluctuations are examined.  相似文献   

16.
A reduced form of Navier–Stokes equations is developed which does not have the usual minimum axial step size restriction. The equations are able to predict accurately turbulent swirling flow in diffusers. An efficient single sweep implicit scheme is developed in conjunction with a variable grid size domain-conforming co-ordinate system. The present scheme indicates good agreement with experimental results for (1) turbulent pipe flow, (2) turbulent diffuser flow, (3) turbulent swirling diffuser flow. The strong coupling between the swirl and the axial velocity profiles outside of the boundary layer region is demonstrated.  相似文献   

17.
Fully turbulent inflow past a shallow cavity is investigated for the configuration of an axisymmetric cavity mounted in a pipe. Emphasis is on conditions giving rise to coherent oscillations, which can lead to locked-on states of flow tones in the pipe–cavity system. Unsteady surface pressure measurements are interpreted using three-dimensional representations of amplitude–frequency, and velocity; these representations are constructed for a range of cavity depth. Assessment of these data involves a variety of approaches. Evaluation of pressure gradients on plan views of the three-dimensional representations allows extraction of the frequencies of the instability (Strouhal) modes of the cavity oscillation. These frequency components are correlated with traditional models originally formulated for cavities in a free-stream. In addition, they are normalized using two length scales: inflow boundary-layer thickness and pipe diameter. These scales are consistent with those employed for the hydrodynamic instability of the separated shear layer, and are linked to the large-scale mode of the shear layer oscillation, which occurs at relatively long cavity length. In fact, a simple scaling based on pipe diameter can correlate the frequencies of the dominant peaks over a range of cavity depth.The foregoing considerations provide evidence that pronounced flow tones can be generated from a fully turbulent inflow at very low Mach number, including the limiting case of fully developed turbulent flow in a pipe. These tones can arise even for the extreme case of a cavity having a length over an order of magnitude longer than its depth. Suppression of tones is generally achieved if the cavity is sufficiently shallow.  相似文献   

18.
The structure- and fluid-borne vibro-acoustic power spectra induced by turbulent fluid flow over the walls of a continuous 90° piping elbow are computed. Although the actual power input to the piping by the wall pressure fluctuations is distributed throughout the elbow, equivalent total power inputs to various structural wavetypes (bending, torsion, axial) and fluid (plane-waves) at the inlet and discharge of the elbow are computed. The powers at the elbow “ports” are suitable inputs to wave- and statistically-based models of larger piping systems that include the elbow. Calculations for several flow and structural parameters, including pipe wall thickness, flow speed, and flow Reynolds number are shown. The power spectra are scaled on flow and structural–acoustic parameters so that levels for conditions other than those considered in the paper may be estimated, subject to geometric similarity constraints (elbow radius/pipe diameter). The approach for computing the powers (called CHAMP – combined hydroacoustic modeling programs), which links computational fluid dynamics, finite element and boundary element modeling, and efficient random analysis techniques, is general, and may be applied to other piping system components excited by turbulent fluid flow, such as U-bends and T-sections.  相似文献   

19.
Based on the existing energy-minimization multi-scale (EMMS) model for turbulent flow in pipe, an improved version is proposed, in which not only a new radial velocity distribution is introduced but also the quantification of total dissipation over the cross-section of pipe is improved for the dominant mechanism of fully turbulent flow in pipe. Then four dynamic equality constraints and some other constraints are constructed but there are five parameters involved, leading to one free variable left. Through the compromise in competition between dominant mechanisms for laminar and fully turbulent flow in pipe respectively, the above four constructed dynamic equality constraints can be closed. Finally, the cases for turbulent flow in pipe with low, moderate and high Reynolds number are simulated by the improved EMMS model. The numerical results show that the model can obtain reasonable results which agree well with the data computed by the direct numerical simulation and those obtained by experiment. This illustrates that the improved EMMS model for turbulent flow in pipe is reasonable and the compromise in competition between dominant mechanisms is indeed a universal governing principle hidden in complex systems. Especially, one more EMMS model for a complex system is offered, promoting the further development of mesoscience.  相似文献   

20.
邓莹莹  时钟 《实验力学》2021,(2):205-222
采用室内实验混合箱和粒子图像测速技术,本文研究了稳定分层无平均剪切二层流(上层淡水、下层盐水)振动湍流结构。对实验录像进行粒子图像测速技术处理,获得垂向二维流场(垂直于格栅平面)瞬时速度和涡量,并用于计算:①时均速度和时均涡量;②均方根速度;③均匀程度和各向同性程度;④平均流强度;⑤时均泰勒的欧拉积分长度尺度;⑥时均湍动能和时均湍动能垂向通量;⑦水平和垂向速度的欧拉频谱。结果显示:(1)格栅方棒处时间平均速度方向垂直向上,而其两侧的时间平均涡量正负交替,表明格栅附近射流结构占据主要位置且存在反向涡旋对。(2)均方根速度随着距离格栅(水平面)高程的增大而减小,并且满足高程的-1.425(接近-3/2)幂次律,表明格栅湍流均方根速度的垂向变化较为剧烈。(3)靠近混合箱边壁处的均匀程度和各向同性程度都大于1,表明靠近混合箱边壁处存在各向异性湍流。(4)格栅反湍流强度的量级非0,但是,相对较小,表明平均流强度较低,故而,本实验结果仍可与无平均流的情况作对比。(5)时均泰勒的欧拉积分长度尺度随着距离格栅(水平面)高程的增大而线性增大,表明随着湍流向上发展,涡的平均尺度增大。(6)时均湍动能和时均湍动能垂向通量随着距离格栅(水平面)高程的增大而减小,而时均湍动能垂向通量为正值,表明远离格栅时均湍动能衰减,但是,始终向上传递。(7)水平和垂向速度的欧拉频谱随着距离格栅(水平面)高程的增大而减小,幂次律介于ω-1和ω-5/3(ω为频率)之间,表明水平和垂向的湍流脉动能量远离格栅均衰减,并受湍流的有限雷诺数效应的影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号