首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
NON-INTERIOR SMOOTHING ALGORITHM FOR FRICTIONAL CONTACT PROBLEMS   总被引:3,自引:0,他引:3  
A new algorithm for solving the three-dimensional elastic contact problem with friction is presented. The algorithm is a non-interior smoothing algorithm based on an NCP-function. The parametric variational principle and parametric quadratic programming method were applied to the analysis of three-dimensional frictional contact problem. The solution of the contact problem was finally reduced to a linear complementarity problem, which was reformulated as a system of nonsmooth equations via an NCP-function. A smoothing approximation to the nonsmooth equations was given by the aggregate function. A Newton method was used to solve the resulting smoothing nonlinear equations. The algorithm presented is easy to understand and implement. The reliability and efficiency of this algorithm are demonstrated both by the numerical experiments of LCP in mathematical way and the examples of contact problems in mechanics.  相似文献   

2.
A continuous variable optimization method and a topological optimization method are proposed for the vibration control of piezoelectric truss structures by means of the optimal placements of active bars. In this optimization model, a zero-one discrete variable is defined in order to solve the optimal placement of piezoelectric active bars. At the same time, the feedback gains are also optimized as continuous design variables. A two-phase procedure is proposed to solve the optimization problem. The sequential linear programming algorithm is used to solve optimization problem and the sensitivity analysis is carried out for objective and constraint functions to make linear approximations. On the basis of the Newmark time integration of structural transient dynamic responses, a new sensitivity analysis method is developed in this paper for the vibration control problem of piezoelectric truss structures with respect to various kinds of design variables. Numerical examples are given in the paper to demonstrate the effectiveness of the methods.  相似文献   

3.
Bi-modulus materials with different mechanical responses in tension and compression are often found in civil, composite, and biological engineering. Numerical analysis of bimodular materials is strongly nonlinear and convergence is usually a problem for traditional iterative schemes. This paper aims to develop a stabilized computational method for nonlinear analysis of 3D bimodular materials. Based on the parametric variational principle, a unified constitutive equa-tion of 3D bimodular materials is proposed, which allows the eight principal stress states to be indicated by three para-metric variables introduced in the principal stress directions. The original problem is transformed into a standard linear complementarity problem (LCP) by the parametric virtual work principle and a quadratic programming algorithm is developed by solving the LCP with the classic Lemke’s algo-rithm. Update of elasticity and stiffness matrices is avoided and, thus, the proposed algorithm shows an excellent conver-gence behavior compared with traditional iterative schemes. Numerical examples show that the proposed method is valid and can accurately analyze mechanical responses of 3D bimodular materials. Also, stability of the algorithm is greatly improved.  相似文献   

4.
By converting an optimal control problem for nonlinear systems to a Hamiltonian system,a symplecitc-preserving method is proposed.The state and costate variables are approximated by the Lagrange polynomial.The state variables at two ends of the time interval are taken as independent variables.Based on the dual variable principle,nonlinear optimal control problems are replaced with nonlinear equations.Furthermore,in the implementation of the symplectic algorithm,based on the 2N algorithm,a multilevel method is proposed.When the time grid is refined from low level to high level,the initial state and costate variables of the nonlinear equations can be obtained from the Lagrange interpolation at the low level grid to improve efficiency.Numerical simulations show the precision and the efficiency of the proposed algorithm in this paper.  相似文献   

5.
A feedback control optimization method of partially observable linear structures via stationary response is proposed and analyzed with linear building structures equipped with control devices and sensors. First, the partially observable control problem of the structure under horizontal ground acceleration excitation is converted into a completely observable control problem. Then the It6 stochastic differential equations of the system are derived based on the stochastic averaging method for quasi-integrable Hamiltonian systems and the stationary solution to the Fokker-Plank-Kolmogorov (FPK) equation associated with the It6 equations is obtained. The performance index in terms of the mean system energy and mean square control force is established and the optimal control force is obtained by minimizing the performance index. Finally, the numerical results for a three-story building structure model under E1 Centro, Hachinohe, Northridge and Kobe earthquake excitations are given to illustrate the application and the effectiveness of the proposed method.  相似文献   

6.
Optimal control system of state space is a conservative system, whose approximate method should be symplectic conservation. Based on the precise integration method, an algorithm of symplectic conservative perturbation is presented. It gives a uniform way to solve the linear quadratic control (LQ control) problems for linear time-varying systems accurately and efficiently, whose key points are solutions of differential Riccati equation (DRE) with variable coefficients and the state feedback equation. The method is symplectic conservative and has a good numerical stability and high precision. Numerical examples demonstrate the effectiveness of the proposed method.  相似文献   

7.
The optimal attitude control of an underactuated spacecraft is investigated in this paper. The flywheels of the spacecraft can somehow only provide control inputs in two independent directions. The dynamic equations are formulated for the spacecraft under a nonholonomic constraint resulting from the constant time-rate of the total angular momentum of the system. The reorientation of such underactuated spacecraft is transformed into an optimal control problem. A genetic algorithm is proposed to derive the control laws of the two flywheels angle velocity inputs. The control laws are approximated by the discrete orthogonal wavelets. The numerical simulations indicate that the genetic algorithm with the wavelet approximation is an effective approach to deal with the optimal reorientation of underactuated spacecraft.  相似文献   

8.
An optimal vibration control strategy for partially observable nonlinear quasi Hamiltonian systems with actuator saturation is proposed. First,a controlled partially observable non-linear system is converted into a completely observable linear control system of finite dimension based on the theorem due to Charalambous and Elliott. Then the partially averaged It stochastic differential equations and dynamical programming equation associated with the completely observable linear system are derived by using the stochastic averaging method and stochastic dynamical programming principle,respectively. The optimal control law is obtained from solving the final dynamical programming equation. The results show that the proposed control strategy has high control effectiveness and control effciency.  相似文献   

9.
A new algorithm for phase contrast X-ray tomography under holographic measurement was proposed in this paper. The main idea of the algorithm was to solve the nonlinear phase retrieval problem using the Newton iterative method. The linear equations for the Newton directions were proved to be ill-posed and the regularized solutions were obtained by the conjugate gradient method. Some numerical experiments with computer simulated data were presented. The efficiency, feasibility and the numerical stability of the algorithm were illustrated by the numerical experiments. Compared with the results produced by the linearized phase retrieval algorithm, we can see that the new algorithm is not limited to be only efficient for the data measured in the near-field of the Fresnel region and thus it has a broader validity range.  相似文献   

10.
Lagrangian-Eulerian formulations based on a generalized variational principle of fluid-solid coupling dynamics are established to describe flow-induced vibration of a structure under small deformation in an incompressible viscous fluid flow. The spatial discretization of the formulations is based on the multi-linear interpolating functions by using the finite element method for both the fluid and solid structures. The generalized trapezoidal rule is used to obtain apparently non-symmetric linear equations in an incremental form for the variables of the flow and vibration. The nonlinear convective term and time factors are contained in the non-symmetric coefficient matrix of the equations. The generalized minimum residual (GMRES) method is used to solve the incremental equations. A new stable algorithm of GMRES-Hughes-Newmark is developed to deal with the flow-induced vibration with dynamical fluid-structure interaction in complex geometries. Good agreement between the simulations and laboratory measurements of the pressure and blade vibration accelerations in a hydro turbine passage was obtained, indicating that the GiViRES-Hughes-Newmark algorithm presented in this paper is suitable for dealing with the flow-induced vibration of structures under small deformation.  相似文献   

11.
在最优控制理论中根据模拟理论思想发展了塑性力学和接触力学中的参变量 变分原理, 并建立了控制输入受限的线性二次(linear quadratic, LQ)最优控制问题的求解新方程---耦合的Hamilton正则 方程与线性互补方程. 通过将连续时间离散成一系列等间距时间区段, 在离散时域内采用参 数二次规划方法给出数值求解输入受限的LQ最优控制问题的新算法. 数值仿真验证 了该算法在求解控制输入受限的LQ最优控制问题中的有效性, 并且该算法具有较快 的收敛性, 在大步长下具有较高的计算精度.  相似文献   

12.
参变量变分原理及其参数二次规划算法是由钟万勰院士1985年针对弹性接触边界非线性问题首次提出来的,经过将近40年的不断发展,目前参变量变分原理已经成功应用于各个领域,其中包括弹塑性分析、接触问题、润滑力学、岩土力学、变刚度杆系结构、先进材料性能分析、材料的蠕变与损伤、柔性结构力学和LQ最优控制等各个工程领域。本文首先回顾了参变量变分原理的起源,介绍了参变量变分原理的基本概念,然后以弹塑性分析问题为例,阐明建立参变量变分原理的理论模型以及实现数值参数二次规划求解原理,最后详细回顾了参变量变分原理的基本理论与相应数值算法在各个领域的发展及其工程应用,展示了参变量变分原理在求解各类非线性问题的特色与优势。  相似文献   

13.
针对三维摩擦接触问题的求解,给出了一种基于参变量变分原理的二阶锥线性互补法. 首先, 基于三维Coulomb摩擦锥在数学表述上属于二阶锥的事实,利用二阶锥规划对偶理论,建立 了三维Coulomb摩擦接触条件的参变量二阶锥线性互补模型,它是二维Coulomb摩擦接触条 件参变量线性互补模型在三维情形下的自然推广;随后,利用参变量变分原理与有限元方法, 建立了求解三维摩擦接触问题的二阶锥线性互补法. 较之于将三维Coulomb摩擦锥进行显式 线性化的线性互补法,该方法无需对三维Coulomb摩擦锥进行线性化,因而在保证精度的 前提下所解问题的规模要小很多. 最后通过算例展示了该方法的特点.  相似文献   

14.
摘要:高熵合金是一种由多种主元元素组成的新型合金。实验研究表明等原子比CrMnFeCoNi高熵合金在低温下具有比室温更高的拉伸强度和断裂韧性。本文针对这一现象,利用分子动力学模拟对平均晶粒尺寸为6 nm的CrMnFeCoNi纳米晶在300、200和77 K下分别进行拉伸模拟。模拟研究揭示了纳米尺度CrMnFeCoNi高熵合金力学行为的温度效应和强韧机理。微结构演化分析表明:低温下,塑性变形阶段,滑移系开动的较少,位错滑移所受的阻力越大,屈服强度和抗拉强度越大;模型破坏时,孔洞缺陷形核较慢,更多孔洞缺陷演化成断口,更多的断口分摊拉伸应变,使得高熵合金纳米晶的低温韧性更好。  相似文献   

15.
针对最优控制问题(OCP)的辛数值方法研究及应用进行综述。主要涉及内容包括,动力学系统为常微分方程描述的一般无约束、含不等式约束和状态时滞的最优控制问题,微分代数方程描述的一般无约束、含不等式约束和含切换系统的最优控制问题,以及闭环最优控制问题。从间接法和直接法两个求解框架出发,重点介绍本课题组在保辛算法方面的研究工作。在间接法框架下,首先基于生成函数和变分原理,将OCP保辛离散为非线性方程组,再数值求解方程组。在直接法框架下,将OCP保辛离散为有限维的非线性规划问题(NLP),再数值求解。针对闭环最优控制问题,提出了保辛模型预测控制、滚动时域估计和瞬时最优控制算法。研究表明,保辛算法具有高精度和高效率的特点,在航空航天和机器人等领域有着广泛应用前景和价值。  相似文献   

16.
IntroductionConsiderthelinearsystemofthemeasurementfeedbackcontrol x=Ax Bw B2 u , ( 1 )y =Cx v ,( 2 )wherexisthen_dimensionalstatevector,yisaq_vectorofmeasurements,uisanm_vectorofcontrolinputs,wandvarel_vector,q_vectorofwhite_noiseprocesswithknownstatisticalprope…  相似文献   

17.
针对大型周边桁架式索网天线由拉索拉压模量不同引起的本构非线性和结构大变形引起的几何非线性问题,给出了基于参变量变分原理的几何非线性有限元方法. 首先针对含预应力索单元拉压模量不同分段描述的本构关系,通过引入参变量,导出了基于参变量及其互补方程的统一描述形式,避免了传统算法需要根据当前变形对索单元张紧/松弛状态的预测,提高了算法收敛性. 然后利用拉格朗日应变描述索网天线结构大变形问题,结合几何非线性有限元法,建立了基于参变量的非线性平衡方程和线性互补方程;并给出了牛顿-拉斐逊迭代法与莱姆算法相结合的求解算法. 数值算例验证了本文提出的算法比传统算法具有更稳定的收敛性和更高的求解精度,特别适合于大型索网天线结构的高精度变形分析和预测.  相似文献   

18.
The objective of the paper is to develop a new algorithm for numerical solution of dynamic elastic-plastic strain hardening/softening problems. The gradient dependent model is adopted in the numerical model to overcome the result mesh-sensitivity problem in the dynamic strain softening or strain localization analysis. The equations for the dynamic elastic-plastic problems are derived in terms of the parametric variational principle, which is valid for associated, non-associated and strain softening plastic constitutive models in the finite element analysis. The precise integration method, which has been widely used for discretization in time domain of the linear problems, is introduced for the solution of dynamic nonlinear equations. The new algorithm proposed is based on the combination of the parametric quadratic programming method and the precise integration method and has all the advantages in both of the algorithms. Results of numerical examples demonstrate not only the validity, but also the advantages of the algorithm proposed for the numerical solution of nonlinear dynamic problems. The project supported by the National Key Basic Research Special Foundation (G1999032805), the National Natural Science Foundation of China (19872016, 50178016, 19832010) and the Foundation for University Key Teacher by the Ministry of Education of China  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号