首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the stress relaxation behavior of PMMA/PS blends, with or without random copolymer addition, submitted to step shear strain experiments in the linear and nonlinear regime was studied. The effect of blend composition (ranging from 10 to 30 wt.% of dispersed phase), viscosity ratio (ranging from 0.1 to 7.5), and random copolymer addition (for concentrations up to 8 wt.% with respect to the dispersed phase) was evaluated and correlated to the evolution of the morphology of the blends. All blends presented three relaxation stages: a first fast relaxation which was attributed to the relaxation of the pure phases, a second one which was characterized by the presence of a plateau, and a third fast one. The relaxation was shown to be faster for less extended and smaller droplets and to be influenced by coalescence for blends with a dispersed phase concentration larger than 20 wt.%. The relaxation of the blend was strongly influenced by the matrix viscosity. The addition of random copolymer resulted in a slower relaxation of the droplets.  相似文献   

2.
The MTR 25 is a multitask rheometer (for shear and squeeze flow) with 25 kg of normal force and a partitioned plate. Torque and normal force are measured at both, the inner disk and the outer ring of the plate. The first and second normal stress differences can be determined from a single test. The axial stiffness is high (107 N/m) by using rigid springs and strain gauges for the load cell. Monodisperse polystyrene (M w = 206 kg/mol, 180°C) has been sheared in the range from 0.05 to 47 s − 1. The viscosity and first normal stress difference are highly reproducible. The second normal stress difference scatters and mirrors the instability at the rim. A critical comparison is made between the MTR 25 method and the single transducer evaluation method (RMS 800 method, Schweizer, Rheol Acta 41:337–344, 2002): Both yield excellent and coinciding viscosity and first normal stress difference data. The RMS 800 method gives more stable second normal stress difference data, since the normal force from the outer ring, which is influenced by edge fracture, is not used. Data for the RMS 800 method can be acquired on the MTR 25. The high normal force capacity permits larger samples and higher shear rates than on the RMS 800.
Thomas SchweizerEmail:
  相似文献   

3.
 We investigate the variations in the shear stress and the first and second normal stress differences of suspensions formulated with viscoelastic fluids as the suspending medium. The test materials comprise two different silicone oils for the matrix fluids and glass spheres of two different mean diameters spanning a range of volume fractions between 5 and 25%. In agreement with previous investigations, the shear stress–shear rate functions of the viscoelastic suspensions were found to be of the same form as the viscometric functions of their matrix fluids, but progressively shifted along the shear rate axis to lower shear rates with increasing solid fraction. The normal stress differences in all of the suspensions examined can be conveniently represented as functions of the shear stress in the fluid. When plotted in this form, the first normal stress difference, as measured with a cone and plate rheometer, is positive in magnitude but strongly decreases with increasing solid fraction. The contributions of the first and the second normal stress differences are separated by using normal force measurements with parallel plate fixtures in conjunction with the cone-and-plate observations. In this way it is possible for the first time to quantify successfully the variations in the second normal stress difference of viscoelastic suspensions for solid fractions of up to 25 vol.%. In contrast to measurements of the first normal stress difference, the second normal stress difference is negative with a magnitude that increases with increasing solid content. The changes in the first and second normal stress differences are also strongly correlated to each other: The relative increase in the second normal stress difference is equal to the relative decrease of the first normal stress difference at the same solid fraction. The variations of the first as well as of the second normal stress difference are represented by power law functions of the shear stress with an unique power law exponent that is independent of the solid fraction. The well known edge effects that arise in cone-and-plate as well as parallel-plate rheometry and limit the accessible measuring range in highly viscoelastic materials to low shear rates could be partially suppressed by utilizing a custom- designed guard-ring arrangement. A procedure to correct the guard-ring influence on torque and normal force measurements is also presented. Received: 20 December 2000 Accepted: 7 May 2001  相似文献   

4.
Results are reported for the dynamic moduli,G andG, measured mechanically, and the dynamic third normal stress difference, measured optically, of a series bidisperse linear polymer melts under oscillatory shear. Nearly monodisperse hydrogenated polyisoprenes of molecular weights 53000 and 370000 were used to prepare blends with a volume fraction of long polymer, L, of 0.10, 0.20, 0.30, 0.50, and 0.75. The results demonstrate the applicability of birefringence measurements to solve the longstanding problem of measuring the third normal stress difference in oscillatory flow. The relationship between the third normal stress difference and the shear stress observed for these entangled polymer melts is in agreement with a widely predicted constitutive relationship: the relationship between the first normal stress difference and the shear stress is that of a simple fluid, and the second normal stress difference is proportional to the first. These results demonstrate the potential use of 1,3-birefringence to measure the third normal stress difference in oscillatory flow. Further, the general constitutive equation supported by the present results may be used to determine the dynamic moduli from the measured third normal stress difference in small amplitude oscillatory shear. Directions for future research, including the use of birefringence measurements to determineN 2/N 1 in oscillatory shear, are described.  相似文献   

5.
 Three-dimensional numerical simulation of viscoelastic coextrusion process has been performed and numerical results were compared with the experimental data of Karagiannis et al. (1990). By varying the magnitude of the second normal stress difference and its ratio of Fluid I and Fluid II, we were able to control the interface profile and the degree of encapsulation along the downstream direction. By increasing the parameter α (αFluid IFluid II) from 0.1 to 0.4 in the Giesekus model and increasing the α ratio (αFluid IαFluid II) between Fluid I and Fluid II from 2.0 to 4.0 in the permissible range of realistic polymeric systems, the interface profile and the degree of encapsulation along the downstream direction were fitted with the experimental results. There was little difference between the numerical results and the experimental data in the interface profile and the degree of encapsulation along the downstream direction when the α ratio was set to 3.0 (0.3:0.1). Fluid I with larger magnitude of the second normal stress difference protrudes into Fluid II with smaller magnitude of the second normal stress difference around the symmetric plane, while Fluid II wraps around Fluid I near the side walls. As the ξ 1 ratio (ξ 1 ,Fluid Iξ 1 ,Fluid II) increases from 1.0 to 3.0 for the two-mode Phan-Thien and Tanner model, it was found that the curvature of the interface profile increased, and the difference between the numerical results and the experimental data in the interface profile and the degree of encapsulation along the downstream direction was almost negligible when the ξ 1 ratio was set to 3.0 (0.54:0.18). Although the parameters of viscoelastic models were fitted by using the shear viscosity data only, quantitative agreements between the numerical results and the experimental coextrusion data were quite satisfactory. Received: 24 April 2001 Accepted: 5 June 2001  相似文献   

6.
In this work, drop coalescence of polymer blends under shear flow in a parallel flow apparatus was investigated by optical sectioning microscopy. In each experiment, shear rate was set at values low enough to avoid any break-up phenomena. The time evolution of the drop size distribution was determined by motorized sample scanning and iterative acquisition of stacks of images along sample depth. Drop size and location in the acquired images was found by automated image analysis techniques. A systematic experimental campaign to investigate the effects of shear rate (in the range 0.1–0.5 s−1), volume fraction (2.5–10%), and viscosity of the two phases (3–63 Pa s) at different viscosity ratio (0.1–2.3) was carried out. By comparing data from different experiments, it was found that at any strain value, the average drop size decreases monotonically with the shear stress, calculated as the product of shear rate and matrix viscosity. Furthermore, the coalescence rate slowed down with increasing viscosity ratio. Overall, these results provide an extensive set of data, which can be used as a benchmark for modeling shear-induced coalescence in polymer blends.Paper presented at the Annual Meeting of the European Society of Rheology, Grenoble, April 2005.  相似文献   

7.
Rheological behavior of concentrated suspensions of chemical vapor deposition carbon nanotubes in uniaxial elongation and simple shear is studied experimentally and theoretically. Nanotubes are suspended in viscous host liquids—castor oil or its blends with n-decane. The elongational measurements are performed by analyzing self-thinning (due to surface tension effect) liquid threads of nanotube suspensions. A quasi-one-dimensional model is used to describe the self-thinning process, whereas corrections accounting for thread nonuniformity and necking are introduced a posteriori. The effects of nanotube concentration and aspect ratio, viscosity of the suspending liquid, and initial diameter of the self-thinning thread in uniaxial elongation are elucidated. The results for uniaxial elongation are compared with those for simple shear. The correspondence in the results of the shear and elongational measurements is addressed and interpreted. The results conform to the Herschel–Bulkley rheological constitutive equation (i.e., power law fluids with yield stress). However, the yield stress in elongation is about 40% higher than in simple shear flow, which suggests that the original Herschel–Bulkley model need modification with the yield stress being a function of the second invariant of the deviatoric stress tensor. The present effort is the first to study capillary self-thinning of Herschel–Bulkley liquids, which are exemplified here by suspensions of carbon nanotubes.  相似文献   

8.
Deformation and wobbling of a liquid drop immersed in a liquid matrix were studied under mild shear conditions for various viscosity ratios. In situ visualization experiments were conducted on a homemade transparent Couette cell incorporated to the Paar Physica MCR500 shear rheometer. The effect of drop or matrix elasticity was examined and was found to play a major role in both deformation and wobbling processes. Experimental results were compared to Jackson and Tucker (J Rheol 47:659–682, 2003), Maffettone and Minale (J Non-Newton Fluid Mech 78:227–241, 1998) and Yu and Bousmina (J Rheol 47:1011–1039, 2003) ellipsoidal models. It was found that the agreement between the Newtonian models and the experimental results required an increase in the drop viscosity. Such increment in viscosity was found to scale with the first normal stress difference.  相似文献   

9.
Nonlinear viscoelasticity of PP/PS/SEBS blends   总被引:1,自引:0,他引:1  
The nonlinear viscoelastic behavior of polypropylene/polystyrene (PP/PS) blends compatibilized or not with the linear triblock copolymer (styrene-ethylene-/butylene-styrene, SEBS) was investigated. Start-up of steady-shear at rates from 0.1 to 10 s–1 was carried out using a controlled strain rotational rheometer and a sliding plate rheometer for strain histories involving one or several shear rates. The shear stress and first normal shear stress difference were measured as functions of time, and the morphologies of the samples before and after shearing were determined. For each strain history except that involving a single shear rate of 0.1 s–1 the blends showed typical non-linear viscoelastic behavior: a shear stress overshoot/undershoot, depending on the history, followed by a steady state for each step. The first normal stress difference increased monotonically to a steady-state value. The values of the stresses increased with the addition of SEBS. The shear stress overshoot and undershoot and the times at which they occurred depended strongly on the strain history, decreasing for a subsequent shear rate step performed in the same direction as the former, and the time at which stress undershoot occurred increased for a subsequent shear rate step performed in the opposite direction, irrespective of the magnitude of the shear rate. This behavior was observed for all the blends studied. The time of overshoot in a single-step shear rate experiment is inversely proportional to the shear rate, and the steady-state value of N1 scaled linearly with shear rate, whereas the steady-state shear stress did not. The average diameter of the dispersed phase decreased for all strain histories when the blend was not compatibilized. When the blend was compatibilized, the average diameter of the dispersed phase changed only during the stronger flows. Experimental data were compared with the predictions of a model formulated using ideas of Doi and Ohta (1991), Lacroix et al. (1998) and Bousmina et al. (2001). The model correctly predicted the behavior of the uncompatibilized blends for single-step shear rates but not that of the compatibilized blends, nor did it predict morphologies after shearing.  相似文献   

10.
Recently we studied time dependent structural changes that are coupled with flow instabilities (Fischer 1998; Wheeler 1998; Fischer 2000). Within a stability analysis, a classification scheme for the feedback circuit of coupled shear-induced structure and flow instabilities was derived by Schmitt et al. (1995) and applied to our samples. Here, inhomogeneous flow layers of different concentration and viscosity are generated by shear-induced diffusion (spinodal demixing) and, as consequence, one no longer observes a homogeneous solution but a type of shear banding that is seen here for the first time. In this paper we present the behaviour of the first normal stress difference observed in the critical shear-rate regime where transient shear-induced structure is coupled with flow instability. Similar to the oscillations of the shear stresses (strain-controlled rheometer) one observes oscillations in the first normal stress difference. This behaviour indicates that elastic structures are built up and destroyed while the shear-induced structures occur and that the induced phase is more elastic than the initial one. Oscillations of shear stress and first normal stress difference are in phase and indicate that both phenomena are caused by the same mechanism. Received: 30 June 1999/Accepted: 14 December 1999  相似文献   

11.
Using a counter rotating parallel plate shear flow cell, the shape relaxation of deformed droplets in a quiescent matrix is studied microscopically. Both the effects of geometrical confinement and component viscoelasticity are systematically explored at viscosity ratios of 0.45 and 1.5. The flow conditions are varied from a rather low to a nearly critical Ca number. Under all conditions investigated, viscoelasticity of the droplet phase has no influence on shape relaxation, whereas matrix viscoelasticity and geometrical confinement result in a slower droplet retraction. Up to high confinement ratios, the relaxation curves for ellipsoidal droplets can be superposed onto a master curve. Confined droplets with a sigmoidal shape relax in two stages: the first consists of a shape change to an ellipsoid with a limited amount of retraction, and the second is the retraction of this ellipsoid. The latter stage can be described by means of one single relaxation time that can be obtained from the relaxation of initially ellipsoidal droplets. The experimental results are compared to the predictions of a recently published phenomenological model for droplet dynamics in confined systems with viscoelastic components (Minale et al., Langmuir 26:126–132, 2010). However, whereas the model predicts additive effects of geometrical confinement and component viscoelasticity, the experimental data reveal more complex interactions.  相似文献   

12.
The Cox–Merz rule and Laun’s rule are two empirical relations that allow the estimation of steady shear viscosity and first normal stress difference, respectively, using small amplitude oscillatory shear measurements. The validity of the Cox–Merz rule and Laun’s rule imply an agreement between the linear viscoelastic response measured in small amplitude oscillatory shear and the nonlinear response measured in steady shear flow measurements. We show that by using a lesser-known relationship also proposed by Cox and Merz, in conjunction with Laun’s rule, a relationship between the rate-dependent steady shear viscosity and the first normal stress difference can be deduced. The new empirical relation enables a priori estimation of the first normal stress difference using only the steady flow curve (i.e., viscosity vs shear rate data). Comparison of the estimated first normal stress difference with the measured values for six different polymer solutions and melts show that the empirical rule provides values that are in reasonable agreement with measurements over a wide range of shear rates, thus deepening the intriguing connection between linear and nonlinear viscoelastic response of entangled polymeric materials.  相似文献   

13.
Edge fracture is an instability of cone-plate and parallel plate flows of viscoelastic liquids and suspensions, characterised by the formation of a `crack' or indentation at a critical shear rate on the free surface of the liquid. A study is undertaken of the theoretical, experimental and computational aspects of edge fracture. The Tanner-Keentok theory of edge fracture in second-order liquids is re-examined and is approximately extended to cover the Criminale-Ericksen-Filbey (CEF) model. The second-order theory shows that the stress distribution on the semi-circular crack is not constant, requiring an average to be taken of the stress; this affects the proportionality constant, K in the edge fracture equation −N 2c = KΓ/a, where N 2c is the critical second normal stress difference, Γ is the surface tension coefficient and a is the fracture diameter. When the minimum stress is used, K = 2/3 as found by Tanner and Keentok (1983). Consideration is given to the sources of experimental error, including secondary flow and slip (wall effect). The effect of inertia on edge fracture is derived. A video camera was used to record the inception and development of edge fracture in four viscoelastic liquids and two suspensions. The recorded image was then measured to obtain the fracture diameter. The edge fracture phenomenon was examined to find its dependence on the physical dimensions of the flow (i.e. parallel plate gap or cone angle), on the surface tension coefficient, on the critical shear rate and on the critical second normal stress difference. The critical second normal stress difference was found to depend on the surface tension coefficient and the fracture diameter, as shown by the theory of Tanner and Keentok (1983); however, the experimental data were best fitted by the equation −N 2c = 1.095Γ/a. It was found that edge fracture in viscoelastic liquids depends on the Reynolds number, which is in good agreement with the inertial theory of edge fracture. Edge fracture in lubricating grease and toothpaste is broadly consistent with the CEF model of edge fracture. A finite volume method program was used to simulate the flow of a viscoelastic liquid, obeying the modified Phan-Thien-Tanner model, to obtain the velocity and stress distribution in parallel plate flow in three dimensions. Stress concentrations of the second normal stress difference (N 2) were found in the plane of the crack; the velocity distribution shows a secondary flow tending to aid crack formation if N 2 is negative, and a secondary flow tending to suppress crack formation if N 2 is positive. Received: 4 January 1999 Accepted: 19 May 1999  相似文献   

14.
Droplets splashing upon films of the same fluid of various depths   总被引:1,自引:0,他引:1  
We explore the effects of fluid films of variable depths on droplets impacting into them. Corresponding to a range of fluid “film” depths, a non-dimensional parameter—H*, defined as the ratio of the film thickness to the droplet diameter—is varied in the range 0.1≤H*≤10. In general, the effect of the fluid film imposes a dramatic difference on the dynamics of the droplet–surface interaction when compared to a similar impact on a dry surface. This is illustrated by the size distribution and number of the splash products. While thin fluid films (H*≈0.1) promote splashing, thicker films (1≤H*≤10) act to inhibit it. The relative roles of surface tension and viscosity are investigated by comparison of a matrix of fluids with low and high values of these properties. Impingement conditions, as characterized by Reynolds and Weber numbers, are varied by velocity over a range from 1.34 to 4.22 m/s, maintaining a constant droplet diameter of 2.0 mm. The dependence of splashing dynamics, characterized by splash product size and number, on the fluid surface tension and viscosity and film thickness are discussed.  相似文献   

15.
The free convective flow and heat transfer, within the framework of Boussinesq approximation, in an anisotropic fluid filled porous rectangular enclosure subjected to end-to-end temperature difference have been investigated using Brinkman extended non-Darcy flow model. The studies involve simultaneous consideration of hydrodynamic and thermal anisotropy. The flow and temperature fields in general are governed by, Ra, the Rayleigh number, AR, the aspect ratio of the slab, K*, the permeability ratio and k*, the thermal conductivity ratio, and Da, Darcy number. Numerical solutions employing the successive accelerated replacement (SAR) scheme have been obtained for 100 ≤ Ra ≤ 1000, 0.5 ≤ AR ≤ 5, 0.5 ≤ K* ≤ 5, 0.5 ≤ k* ≤ 5, and 0 ≤ Da ≤ 0.1. It has been found that [`(Nu)]{\overline {Nu}}, average Nusselt number increases with increase in K* and decreases as k* increases. However, the magnitude of the change in [`(Nu)]{\overline {Nu}} depends on the parameter Da, characterizing the Brinkman extended non-Darcy flow.  相似文献   

16.
By means of a cone and plate rheometer the relaxation of the shear stress and the first normal stress difference in polymer liquids upon cessation of a constant shear rate were examined. The experiments were conducted mostly in a high shear rate region of relevance for the processing of these materials. The relaxation behavior at these shear rates can only be measured accurately under extremely precise specifications of the rheometer. To determine under which conditions the integral normal thrust is a convenient measure for the relaxing local first normal stress difference the radial distribution of the pressure in the shear gap was measured. The shape of relaxation of both the shear stress and the first normal stress difference could be closely approximated for the entire measured shear rate and time range by a two parameter statistical function. In the range of measured shear rates, one of the parameters, the standard deviationS, is equal for the shear and the normal stress, and is independent of the shear rate within the limit of experimental error. The second parameter, the mean relaxation timet 50, of the shear stress andt 50, of the first normal stress difference, can be calculated approximately from the viscosity function and only a single relaxation experiment.  相似文献   

17.
Relaxation of the second normal stress difference (N 2) following step strain of a concentrated monodisperse polystyrene solution has been studied using mechanical and optical rheometry. Measurements of normal thrust in a parallel plate geometry are corrected for strain inhomogeneity and combined with independent measurements of the first normal stress difference (N 1) to determine N 2. Optical experiments were performed using a novel configuration where flow birefringence data collected using multiple light paths within the shear plane are combined with the stress-optical law to determine all three independent stress components for shearing deformations. This technique eliminates end effects, and provides an opportunity to oversample the stress tensor and develop consistency checks of experimental data. N 2 is found to be nonzero at all accessible times, and relaxes in roughly constant proportion to N 1. This reflects nonaffine distribution of chain segments, even well within the regime of chain retraction at short times. Data collected with the two techniques are reasonably consistent with each other, and with results of previous studies, generally lying between the predictions of the Doi-Edwards model with and without the independent alignment approximation. The normal stress ratio –N 2/N 1 shows pronounced strain thinning in the nonlinear regime.  相似文献   

18.
This paper studies the rheological behavior of a dilute suspension of spherical microcapsules, i.e. spherical thin elastic membranes filled with an incompressible liquid. Previous results obtained for the motion of such capsules freely suspended in a simple shear flow are first extended to general linear shear flows. Then the stresslet term in the external flow is computed to order ?2, where ?, assumed to be small with respect to unity, is the ratio of viscous to elastic forces acting on the particle. The resulting constitutive equation is of the viscoelastic type and is similar to the one obtained for liquid droplets. It predicts that the microcapsule suspension exhibits a shear dependent viscosity and normal stress effects. The exact dependency of these phenomena on the microscopic parameters of the suspension is explicitly provided by the model.  相似文献   

19.
Steady shear rheology of a dilute emulsion with viscoelastic inclusions is numerically investigated using direct numerical simulations. Batchelor's formulation for rheology of a viscous emulsion is extended for a viscoelastic system. Viscoelasticity is modeled using the Oldroyd-B constitutive equation. A front-tracking finite difference code is used to numerically determine the drop shape, and solve for the velocity and stress fields. The effective stress of the viscoelastic emulsion has three different components due to interfacial tension, viscosity difference (not considered here) and the drop phase viscoelasticity. The interfacial contributions – first and second normal stress differences and shear stresses – vary with Capillary number in a manner similar to those of a Newtonian system. However the shear viscosity decreases with viscoelasticity at low Capillary numbers, and increases at high Capillary numbers. The first normal stress difference due to interfacial contribution decreases with increasing drop phase viscoelasticity. The first normal stress difference due to the drop phase viscoelasticity is found to have a complex dependence on Capillary and Deborah numbers, in contrast with the linear mixing rule. Drop phase viscoelasticity does not contribute significantly to effective shear viscosity of the emulsion. The total first normal stress difference shows an increase with drop phase viscoelasticity at high Capillary numbers. However at low Capillary numbers, a non-monotonic behavior is observed. The results are explained by examining the stress field and the drop shape.  相似文献   

20.
Capability of the explicit algebraic stress models to predict homogeneous and inhomogeneous shear flows are examined. The importance of the explicit solution of the production to dissipation ratio is first highlighted by examining the algebraic stress models performance at purely irrotational strain conditions. Turbulent recirculating flows within sudden expanding pipes are further simulated with explicit algebraic stress model and anisotropic eddy viscosity model. Both models predict better stress–strain interactions, showing reasonable shear layer developments. The anisotropic stress field are also accurately predicted by the models, though the anisotropic eddy viscosity model of Craft et al. returns marginally better results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号