首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A nonlinear nonlocal model arising from synaptically coupled neuronal networks with two integral terms is considered. The existence and stability of several traveling wave solutions are established by using ideas in differential equations and functional analysis. Steady-state solutions of some inhomogeneous integral–differential equations are also investigated. We consider several types of kernel functions: (I) positive functions, such as and , where ρ>0 is a constant; (II) nonnegative kernels with compact supports, for examples, (i) 1$$" align="middle" border="0"> , and (ii) {\pi\over 2}$$" align="middle" border="0"> ; (III) Mexican hat type kernel functions, such as and , where A>B>0 and a>b>0 are constants.Dedicated to Professor Yulin Zhou and Professor Boling Guo on the Occassions of their birthdays.  相似文献   

2.
Transport in Porous Media - We develop an analytical model describing the flow of NaCl– $$\hbox {H}_2\hbox {O}$$ in a saturated porous medium adjacent to a hot vertical wall and apply the...  相似文献   

3.
The purpose of this article is to derive a macroscopic model for a certain class of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ, the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are on the length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient to the filtration or Darcy velocity in a coupled nonlinear form explicitly given by
or equivalently
In these equations, and are the inertial and coupling inertial correction tensors that are functions of flow-rates. The dominant and coupling permeability tensors and and the permeability and viscous drag tensors and are intrinsic and are those defined in the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseux et al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determined from closure problems that are to be solved using a spatially periodic model of a porous medium. The practical procedure to compute these tensors is provided.  相似文献   

4.
This study presents experimental results from a flooding test series performed at reservoir conditions for five high-porosity Cretaceous onshore chalks from Denmark, Belgium and the USA, analogous to North Sea reservoir chalk. The chalks are studied in regard to their chemo-mechanical behaviour when performing tri-axial compaction tests while injecting brines (0.219 mol/L \(\hbox {MgCl}_{2}\) or 0.657 mol/L NaCl) at reservoir conditions for 2–3 months (T = 130 \(^\circ \hbox {C}\); 1 PV/d). Each chalk type was examined in terms of its mineralogical and chemical composition before and after the mechanical flooding tests, using an extensive set of analysis methods, to evaluate the chalk- and brine-dependent chemical alterations. All \(\hbox {MgCl}_{2}\)-flooded cores showed precipitation of Mg-bearing minerals (mainly magnesite). The distribution of newly formed Mg-bearing minerals appears to be chalk-dependent with varying peaks of enrichment. The chalk samples from Aalborg originally contained abundant opal-CT, which was dissolved with both NaCl and \(\hbox {MgCl}_{2}\) and partly re-precipitated as Si-Mg-bearing minerals. The Aalborg core injected with \(\hbox {MgCl}_{2}\) indicated strongly increased specific surface area (from 4.9 \(\hbox {m}^{2}\hbox {/g}\) to within 7–9 \(\hbox {m}^{2}\hbox {/g}\)). Mineral precipitation effects were negligible in chalk samples flooded with NaCl compared to \(\hbox {MgCl}_{2}\). Silicates were the main mineralogical impurity in the studied chalk samples (0.3–6 wt%). The cores with higher \(\hbox {SiO}_{2}\) content showed less deformation when injecting NaCl brine, but more compaction when injecting \(\hbox {MgCl}_{2}\)-brine. The observations were successfully interpreted by mathematical geochemical modelling which suggests that the re-precipitation of Si-bearing minerals leads to enhanced calcite dissolution and mass loss (as seen experimentally) explaining the high compaction seen in \(\hbox {MgCl}_{2}\)-flooded Aalborg chalk. Our work demonstrates that the original mineralogy, together with the newly formed minerals, can control the chemo-mechanical interactions during flooding and should be taken into account when predicting reservoir behaviour from laboratory studies. This study improves the understanding of complex flow reaction mechanisms also relevant for field-scale dynamics seen during brine injection.  相似文献   

5.
Transport in Porous Media - This work investigates the interplay of gas transport in the microcracks and matrix of shale using He and $$\hbox {CO}_2$$ via transient upstream pressure-pulse-decay...  相似文献   

6.
The significant reduction in heavy oil viscosity when mixed with \(\hbox {CO}_{2}\) is well documented. However, for \(\hbox {CO}_{2}\) injection to be an efficient method for improving heavy oil recovery, other mechanisms are required to improve the mobility ratio between the \(\hbox {CO}_{2}\) front and the resident heavy oil. In situ generation of \(\hbox {CO}_{2}\)-foam can improve \(\hbox {CO}_{2}\) injection performance by (a) increasing the effective viscosity of \(\hbox {CO}_{2}\) in the reservoir and (b) increasing the contact area between the heavy oil and injected \(\hbox {CO}_{2}\) and hence improving \(\hbox {CO}_{2}\) dissolution rate. However, in situ generation of stable \(\hbox {CO}_{2}\)-foam capable of travelling from the injection well to the production well is hard to achieve. We have previously published the results of a series of foam stability experiments using alkali and in the presence of heavy crude oil (Farzaneh and Sohrabi 2015). The results showed that stability of \(\hbox {CO}_{2}\)-foam decreased by addition of NaOH, while it increased by addition of \(\hbox {Na}_{2}\hbox {CO}_{3}\). However, the highest increase in \(\hbox {CO}_{2}\)-foam stability was achieved by adding borate to the surfactant solution. Borate is a mild alkaline with an excellent pH buffering ability. The previous study was performed in a foam column in the absence of a porous medium. In this paper, we present the results of a new series of experiments carried out in a high-pressure glass micromodel to visually investigate the performance of borate–surfactant \(\hbox {CO}_{2}\)-foam injection in an extra-heavy crude oil in a transparent porous medium. In the first part of the paper, the pore-scale interactions of \(\hbox {CO}_{2}\)-foam and extra-heavy oil and the mechanisms of oil displacement and hence oil recovery are presented through image analysis of micromodel images. The results show that very high oil recovery was achieved by co-injection of the borate–surfactant solution with \(\hbox {CO}_{2}\), due to in-situ formation of stable foam. Dissolution of \(\hbox {CO}_{2}\) in heavy oil resulted in significant reduction in its viscosity. \(\hbox {CO}_{2}\)-foam significantly increased the contact area between the oil and \(\hbox {CO}_{2}\) significantly and thus the efficiency of the process. The synergy effect between the borate and surfactant resulted in (1) alteration of the wettability of the porous medium towards water wet and (2) significant reduction of the oil–water IFT. As a result, a bank of oil-in-water (O/W) emulsion was formed in the porous medium and moved ahead of the \(\hbox {CO}_{2}\)-foam front. The in-situ generated O/W emulsion has a much lower viscosity than the original oil and plays a major role in the observed additional oil recovery in the range of performed experiments. Borate also made \(\hbox {CO}_{2}\)-foam more stable by changing the system to non-spreading oil and reducing coalescence of the foam bubbles. The results of these visual experiments suggest that borate can be a useful additive for improving heavy oil recovery in the range of the performed tests, by increasing \(\hbox {CO}_{2}\)-foam stability and producing O/W emulsions.  相似文献   

7.
In this paper, first a class of fractional differential equations are obtained by using the fractional variational principles. We find a fractional Lagrangian L(x(t), where a c D t α x(t)) and 0<α<1, such that the following is the corresponding Euler–Lagrange
(1)
At last, exact solutions for some Euler–Lagrange equations are presented. In particular, we consider the following equations
(2)
(3)
where g(t) and f(t) are suitable functions. D. Baleanu is on leave of absence from Institute of Space Sciences, P.O. BOX MG-23, 76900 Magurele-Bucharest, Romania. e-mail: baleanu@venus.nipne.ro.  相似文献   

8.
The unsteady dynamics of the Stokes flows, where , is shown to verify the vector potential–vorticity ( ) correlation , where the field is the pressure-gradient vector potential defined by . This correlation is analyzed for the Stokes eigenmodes, , subjected to no-slip boundary conditions on any two-dimensional (2D) closed contour or three-dimensional (3D) surface. It is established that an asymptotic linear relationship appears, verified in the core part of the domain, between the vector potential and vorticity, , where is a constant offset field, possibly zero.  相似文献   

9.
A deep bed filtration model has been developed to quantify the effect of nanoparticles (NPs) on mitigating fines migration in porous media. The filtration coefficients representing the total kinetics of particles capture were obtained by fitting the model to the laboratory data. Based on the optimum filtration coefficients, the model was utilized to history match the particle concentration breakthrough profiles observed in twelve core flood tests. In the flooding experiments, the effect of five types of metal oxide NPs, \(\upgamma \hbox {-Al}_{2}\hbox {O}_{3}\) , CuO, MgO, \(\hbox {SiO}_{2}\) , and ZnO, on migrating fines were investigated. In each test, a stable suspension was injected into the already NP-treated core and effluents’ fines concentration was measured based on turbidity analysis. In addition, zeta potential analysis was done to obtain the surface charge (SC) of the NP-treated medium. It was found that the presence of NPs on the medium surface results in SC modification of the bed and as a result, enhances the filter performance. Furthermore, the ionic strength of the nanofluid was recognized as an important parameter which governs the capability of NPs to modify the SC of the bed. The remedial effect of NPs on migrating fines is quantitatively explained by the matched filtration coefficients. The SC of the medium soaked by \(\upgamma \hbox {-Al}_{2}\hbox {O}_{3}\) nanofluid is critically increased; therefore, the matched filtration coefficient is of remarkably high value and as a result, the treated medium tends to adsorb more than 70 % of suspended particles. The predicted particle concentration breakthrough curves well matched with the experimental data.  相似文献   

10.
We study the limit of the hyperbolic–parabolic approximation
The function is defined in such a way as to guarantee that the initial boundary value problem is well posed even if is not invertible. The data and are constant. When is invertible, the previous problem takes the simpler form
Again, the data and are constant. The conservative case is included in the previous formulations. Convergence of the , smallness of the total variation and other technical hypotheses are assumed, and a complete characterization of the limit is provided. The most interesting points are the following: First, the boundary characteristic case is considered, that is, one eigenvalue of can be 0. Second, as pointed out before, we take into account the possibility that is not invertible. To deal with this case, we take as hypotheses conditions that were introduced by Kawashima and Shizuta relying on physically meaningful examples. We also introduce a new condition of block linear degeneracy. We prove that, if this condition is not satisfied, then pathological behaviors may occur.  相似文献   

11.
This study investigated the dynamic displacement and dissolution of \(\hbox {CO}_{2}\) in porous media at 313 K and 6/8 MPa. Gaseous (\(\hbox {gCO}_{2}\)) at 6 MPa and supercritical \(\hbox {CO}_{2 }(\hbox {scCO}_{2}) \) at 8 MPa were injected downward into a glass bead pack at different flow rates, following upwards brine injection. The processes occurring during \(\hbox {CO}_{2}\) drainage and brine imbibition were visualized using magnetic resonance imaging. The drainage flow fronts were strongly influenced by the flow rates, resulting in different gas distributions. However, brine imbibition proceeded as a vertical compacted front due to the strong effect of gravity. Additionally, the effects of flow rate on distribution and saturation were analyzed. Then, the front movement of \(\hbox {CO}_{2}\) dissolution was visualized along different paths after imbibition. The determined \(\hbox {CO}_{2}\) concentrations implied that little \(\hbox {scCO}_{2}\) dissolved in brine after imbibition. The dissolution rate was from \(10^{-8}\) to \(10^{-9}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) and from \(10^{-6}\) to \(10^{-8}\, \hbox {kg}\, \hbox {m}^{-3} \, \hbox {s}^{-1}\) for \(\hbox {gCO}_{2}\) at 6 MPa and \(\hbox {scCO}_{2 }\) at 8 MPa, respectively. The total time for the \(\hbox {scCO}_{2}\) dissolution was short, indicating fast mass transfer between the \(\hbox {CO}_{2}\) and brine. Injection of \(\hbox {CO}_{2}\) under supercritical conditions resulted in a quick establishment of a steady state with high storage safety.  相似文献   

12.
13.
Consider the problem where Ω is a bounded convex domain in , N > 2, with smooth boundary . We study the asymptotic behaviour of the least energy solutions of this system as . We show that the solution remain bounded for p large. In the limit, we find that the solution develops one or two peaks away from the boundary, and when a single peak occurs, we have a characterization of its location.This research was supported by FONDECYT 1061110 and 3040059.  相似文献   

14.
15.
The central solenoid (CS) is one of the key components of the International Thermonuclear Experimental Reactor (ITER) tokamak and which is often considered as the heart of this fusion reactor. This solenoid will be built by using \(\hbox {Nb}_{3}\hbox {Sn}\) cable-in-conduit conductors (CICC), capable of generating a 13 T magnetic field. In order to assess the performance of the \(\hbox {Nb}_{3}\hbox {Sn}\) CICC in nearly the ITER condition, many short samples have been evaluated at the SULTAN test facility (the background magnetic field is of 10.85 T with the uniform length of 400 mm at 1% homogeneity) in Centre de Recherches en Physique des Plasma (CRPP). It is found that the samples with pseudo-long twist pitch (including baseline specimens) show a significant degradation in the current-sharing temperature (Tcs), while the qualification tests of all short twist pitch (STP) samples, which show no degradation versus electromagnetic cycling, even exhibits an increase of Tcs. This behavior was perfectly reproduced in the coil experiments at the central solenoid model coil (CSMC) facility last year. In this paper, the complex structure of the \(\hbox {Nb}_{3}\hbox {Sn}\) CICC would be simplified into a wire rope consisting of six petals and a cooling spiral. An analytical formula for the Tcs behavior as a function of the axial strain of the cable is presented. Based on this, the effects of twist pitch, axial and transverse stiffness, thermal mismatch, cycling number, magnetic distribution, etc., on the axial strain are discussed systematically. The calculated Tcs behavior with cycle number show consistency with the previous experimental results qualitatively and quantitatively. Lastly, we focus on the relationship between Tcs and axial strain of the cable, and we conclude that the Tcs behavior caused by electromagnetic cycles is determined by the cable axial strain. Once the cable is in a compression situation, this compression strain and its accumulation would lead to the Tcs degradation. The experimental observation of the Tcs enhancement in the CS STP samples should be considered as a contribution of the shorter length of the high field zone in SULTAN and CSMC devices, as well as the tight cable structure.  相似文献   

16.
Using an Orlicz–Sobolev Space setting, we consider an eigenvalue problem for a system of the form
We prove that the solution to a suitable minimizing problem, with a restriction, yields a solution to this problem for a certain λ. The differential operators involved lack homogeneity and in addition the Orlicz–Sobolev spaces needed may not be reflexive and the corresponding functional in the minimization problem is in general neither everywhere defined nor a fortiori C 1.  相似文献   

17.
We study the global attractor of the non-autonomous 2D Navier–Stokes (N.–S.) system with singularly oscillating external force of the form . If the functions g 0(x, t) and g 1 (z, t) are translation bounded in the corresponding spaces, then it is known that the global attractor is bounded in the space H, however, its norm may be unbounded as since the magnitude of the external force is growing. Assuming that the function g 1 (z, t) has a divergence representation of the form where the functions (see Section 3), we prove that the global attractors of the N.–S. equations are uniformly bounded with respect to for all . We also consider the “limiting” 2D N.–S. system with external force g 0(x, t). We have found an estimate for the deviation of a solution of the original N.–S. system from a solution u 0(x, t) of the “limiting” N.–S. system with the same initial data. If the function g 1 (z, t) admits the divergence representation, the functions g 0(x, t) and g 1 (z, t) are translation compact in the corresponding spaces, and , then we prove that the global attractors converges to the global attractor of the “limiting” system as in the norm of H. In the last section, we present an estimate for the Hausdorff deviation of from of the form: in the case, when the global attractor is exponential (the Grashof number of the “limiting” 2D N.–S. system is small).   相似文献   

18.
19.
We study the solutions of the nonstationary incompressible Navier–Stokes equations in , of self-similar form , obtained from small and homogeneous initial data a(x). We construct an explicit asymptotic formula relating the self-similar profile U(x) of the velocity field to its corresponding initial datum a(x).  相似文献   

20.
The existence and uniqueness of a solution to the nonstationary Navier–Stokes system having a prescribed flux in an infinite cylinder is proved. We assume that the initial data and the external forces do not depend on x3 and find the solution (u, p) having the following form
where x′  =  (x1, x2). Such solution generalize the nonstationary Poiseuille solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号