首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
孙茂  刘晶昌  吴礼义 《力学学报》1992,24(3):259-264
本文提出一种分区Lagrangian涡方法:将附着流动和分离流动分开处理,在附着区解边界层方层,只在分离区用涡方法解N-S方程。由于将尺度不同的区域分开了,求解分离区流动的涡方法中,每一时间步上物面引出的涡数在较小程度上依赖于Re数。这样,求解高Re数流动时,流场内的涡数,因而计算机内存和时间得以大大减小。用该方法计算了瞬时起动圆柱的初期流动,与实验结果比较相符很好。  相似文献   

2.
A numerical method is presented in this paper for the solution of flow field in marine gas turbine air intake filtration channel. The flow field was successfully calculated by this method, and aerodynamic characteristics were obtained for various types of filtration channels. This work is expected to be of practical importance for the design of such filters. Upstream difference was adopted to discretize the non-conservative type N-S equation for two-dimensional, time-dependnet, viscous and incompressible flow, and the stability, convergence, accuracy and artificial viscosity of the resulting difference equation were examined. This equation can be used to calculate viscous flows with Reynolds number up to tens of thousands. Also presented in this paper is a calculation method for treating wall vortex at boundary inflection points. Careful studies show that calculation based on the difference equational and wall vortex treatment proposed here are in good agreement with experimental results.  相似文献   

3.
格子-波尔兹曼法是近年来新兴的一种计算流体力学数值方法。随着这种方法的不断发展,人们将它用于流体的仿真、优化等不同场合。与此同时,一些与流场流速和压强相关的物理量(如能耗)的求解也成为关注的焦点。本文介绍了能耗这一流体宏观量的格子-波尔兹曼法求解及其实现。与传统的有限差分法不同,本文在求解有关的速度梯度时使用了格子-波尔兹曼-矩法,这种方法不但能够避免有限差分法在边界处失效的缺点,而且计算简单,算法局部性好,适合大规模并行计算。本文在分析其数值解精度的基础上,使用这种方法进行了以能耗极小为目标的直通道内椭圆挡块的参数优化。这些分析和算例分别定量和定性地说明了本文算法的准确性。  相似文献   

4.
Marine animals and micro-machines often use wiggling motion to generate thrust. The wiggling motion can be modeled by a progressive wave where its wavelength describes the flexibility of wiggling animals. In the present study, an immersed boundary method is used to simulate the flows around the wiggling hydrofoil NACA 65-010 at low Reynolds numbers. One can find from the numerical simulations that the thrust generation is largely determined by the wavelength. The thrust coefficients decrease with the increasing wavelength while the propulsive efficiency reaches a maximum at a certain wavelength due to the viscous effects. The thrust generation is associated with two different flow patterns in the wake: the well-known reversed Karman vortex streets and the vortex dipoles. Both are jet-type flows where the thrust coefficients associated with the reversed Karman vortex streets are larger than the ones associated with the vortex diploes.  相似文献   

5.
An algorithm is devised for calculating by the finite difference method the supersonic flow region for three-dimensional steady-state flow of a viscous gas past a blunted body with many contour discontinuities. The state of this gas at high hypersonic flight speeds can be characterized by equilibrium or frozen physicochemical processes. Generally speaking, any arbitrary number and sequence of either compression or expansion discontinuities is permitted. The computational scheme adopted provides identification of the vortex layers, regions with different equations of state, and so on. We use a flow model that is either frozen throughout the entire shock layer or only in the portion of the layer adjacent to the body surface. The pressure at certain points on the surface of spherically blunted cones with half-angles θ?10° may differ by a factor of 2 or more in equilibrium and frozen flows. Example calculations are presented, and the results are analyzed.  相似文献   

6.
A finite difference simulation method for a viscous flow around a circular cylinder sinusoidally oscillating at low Keulegan-Carpenter numbers is presented. Navier-Stokes equations in finite difference form are solved on a moving grid system, based on a time dependent coordinate transformation. Evolution with time of the flow structures induced by a circular cylinder performing sinusoidal oscillations in a fluid at rest, by means of stream lines, pressure contours and vortex shedding is studied in detail at Keulegan-Carpenter numbers, Kc = 9.4 and 14. The time dependent drag and lift are also explained.  相似文献   

7.
高雷诺数下求解NS方程的无网格算法   总被引:1,自引:0,他引:1  
提出了一种适合高雷诺数NS方程求解的隐式无网格算法。针对高雷诺数粘性流动的特点,在附面层内的粘性影响区域采用法向层次推进布点的方法形成离散点云,在附面层外的计算区域内实行填充式布点的方法形成离散点云。根据附面层内外点云的不同构造特点,推导出运用格林公式和最小二乘曲面拟合方法求取空间导数的统一形式,在此基础上运用AUSM _up格式求得数值通量,并引入BL湍流模型对雷诺平均NS方程的湍流应力项进行封闭。时间推进格式方面,采用了计算效率较高的隐式高斯-赛德尔迭代算法。为了验证本文方法的计算精度和鲁棒性,对NACA0012翼型低速流动、RAE2822翼型跨音速绕流和二维圆柱的分离流动进行了数值模拟。  相似文献   

8.
A hybrid approach to couple finite difference method (FDM) with finite particle method (FPM) (ie, FDM-FPM) is developed to simulate viscous incompressible flows. FDM is a grid-based method that is convenient for implementing multiple or adaptive resolutions and is computationally efficient. FPM is an improved smoothed particle hydrodynamics (SPH), which is widely used in modeling fluid flows with free surfaces and complex boundaries. The proposed FDM-FPM leverages their advantages and is appealing in modeling viscous incompressible flows to balance accuracy and efficiency. In order to exchange the interface information between FDM and FPM for achieving consistency, stability, and convergence, a transition region is created in the particle region to maintain the stability of the interface between two methods. The mass flux algorithm is defined to control the particle creation and deletion. The mass is updated by N-S equations instead of the interpolation. In order to allow information exchange, an overlapping zone is defined near the interface. The information of overlapping zone is obtained by an FPM-type interpolation. Taylor-Green vortices and lid-driven shear cavity flows are simulated to test the accuracy and the conservation of the FDM-FPM hybrid approach. The standing waves and flows around NACA airfoils are further simulated to test the ability to deal with free surfaces and complex boundaries. The results show that FDM-FPM retains not only the high efficiency of FDM with multiple resolutions but also the ability of FPM in modeling free surfaces and complex boundaries.  相似文献   

9.
A 3-D FEM/FDM overlapping scheme for viscous, incompressible flow problems is presented that combines the finite element method, which is best suited to analyze flow in any arbitrarily shaped flow geometry, with the finite difference method, which is advantageous in both computing time and computer storage. The combination of both methods enables large-scale viscous flow to be analyzed, which is crucial both for detailed analysis of 3-D flows and for solving flow problems around moving bodies, A modified ABM AC method is used as the basic algorithm, to which a sophisticated time integration scheme, proposed by the present authors, has been applied. In this paper, some numerical results including 3-D heat and mass transfer problem and moving-boundary problems are presented.  相似文献   

10.
李立 《力学与实践》2017,39(1):18-24
提出一种基于非结构混合网格和有限体积法的有效计算策略,对第二期国际涡流试验项目(second international vortex flow experiment,VFE-2)的尖前缘65°三角翼在马赫数0.4,迎角20.3°,雷诺数2×10~6条件下的亚音速复杂流场结构进行数值模拟,重点探讨了基于计算数据进行该类型复杂涡系干扰表面和空间流场关键特征提取和数据可视化问题.通过与相关试验类比,建立了与先进试验流动显示技术相比拟的定性和定量分析方法,为三角翼这类复杂流场结构的精细分析奠定了技术基础.采用上述方法,细致分析了亚音速三角翼的大迎角复杂旋涡流场结构,得到了与试验一致的结论.研究证实:在大迎角条件下,三角翼流动物理复杂,黏性效应耦合严重,只有通过N-S方程计算才能准确地捕捉主涡和二次涡的发展.  相似文献   

11.
A parallel computer implementation of a vorticity formulation for the analysis of incompressible viscous fluid flow problems is presented. The vorticity formulation involves a three‐step process, two kinematic steps followed by a kinetic step. The first kinematic step determines vortex sheet strengths along the boundary of the domain from a Galerkin implementation of the generalized Helmholtz decomposition. The vortex sheet strengths are related to the vorticity flux boundary conditions. The second kinematic step determines the interior velocity field from the regular form of the generalized Helmholtz decomposition. The third kinetic step solves the vorticity equation using a Galerkin finite element method with boundary conditions determined in the first step and velocities determined in the second step. The accuracy of the numerical algorithm is demonstrated through the driven‐cavity problem and the 2‐D cylinder in a free‐stream problem, which represent both internal and external flows. Each of the three steps requires a unique parallelization effort, which are evaluated in terms of parallel efficiency. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

12.
During the mixing of viscous incompressible flows with different velocities, in the vicinity of a trailing edge an interaction region with a three-layer structure is formed, similar to that in the case of symmetric shedding with equal velocities. The boundary layers developing on the upper and lower sides of the airfoil form a viscous mixing layer, or vortex sheet, which separates the flows downstream of the trailing edge. The boundary value problem corresponding to the flow in the viscous sublayer in the vicinity of the trailing edge of a flat plate is solved for high Reynolds numbers using an efficient numerical method for solving the equations of asymptotic interaction theory.  相似文献   

13.
基于反馈力浸入边界法模拟复杂动边界流动   总被引:2,自引:1,他引:1  
浸入边界法是模拟流固耦合的重要数值方法之一。本文采用反馈力浸入边界方法,对旋转圆柱和水轮机活动导叶旋转摆动绕流后的动边界流场进行数值模拟。其中,固体边界采用一系列离散的点近似代替,流体为不可压缩牛顿流体,使用笛卡尔自适应加密网格,利用有限差分法进行求解。固体对流场的作用通过构造适宜的反馈力函数实现。本文首先通过旋转圆柱绕流的计算结果同实验结果进行对比,吻合较好,验证了该计算方法的可靠性。然后针对水电站水力过渡过程中水轮机活动导叶旋转摆动绕流后的动边界流场进行数值模拟,得到导叶动态绕流后的流场分布特性和涡结构的演化特性。  相似文献   

14.
The problems related with the development of secondary structures in time-dependent rotating flows are considered. The experimental results on the generation of these structures (inhomogeneities placed in series in a gas) which occur outside (inside) a cylindrical tube, when it starts (ends) suddenly to rotate, are presented. The qualitative explanation of these results is given on the basis of the ideas on the development of time-dependent viscous boundary layers, the condition of the stability of axisymmetric rotating flows obtained in the inviscid approximation, and the condition for the Görtler vortex generation. To obtain a more complete idea of the effect of secondary structure generation in time-dependent rotating flows two flows are numerically modeled on the basis of the complete Navier-Stokes equations. The first problem is that of rotating gas (air) flow in a round cylindrical tube of finite length with closed ends when it starts or ends suddenly to rotate. The second situation concerns with the generation of inside or outside (with respect to the tube surface) time-dependent vortex structures, when a tube with one closed end starts or ends suddenly to rotate; a gas flows into the tube from an external finite volume through the central region of its second open end and flows out of the tube into the volume along the periphery of this section. The flow parameters are analyzed both qualitatively and quantitatively.  相似文献   

15.
船用燃气轮机进气滤清器惯性级内的流场计算和实验验证   总被引:1,自引:0,他引:1  
本文提出了一套求解船用燃气轮机进气滤清器流道流场的数值方法,成功地计算了流道内流场的状态,给出了各种不同型号流道的气动特性,对指导滤清器的设计有较大的现实意义, 在这套方法中,我们应用上风差分来逼近二维、非定常、粘性、不可压缩流体非守恒型的N-S方程,提出了一种可计算雷诺数高达上万的粘性流的差分方程,考察了这种差分方程的稳定性,收敛性、精度和人工粘性,本文还提出了处理一些边界拐点处壁涡的计算方法,实际算例表明,使用本文提出的差分方程和壁涡处理方法给出的计算结果和实验吻合良好。  相似文献   

16.
In the present study, the preconditioned incompressible Navier‐Stokes equations with the artificial compressibility method formulated in the generalized curvilinear coordinates are numerically solved by using a high‐order compact finite‐difference scheme for accurately and efficiently computing the incompressible flows in a wide range of Reynolds numbers. A fourth‐order compact finite‐difference scheme is utilized to accurately discretize the spatial derivative terms of the governing equations, and the time integration is carried out based on the dual time‐stepping method. The capability of the proposed solution methodology for the computations of the steady and unsteady incompressible viscous flows from very low to high Reynolds numbers is investigated through the simulation of different 2‐dimensional benchmark problems, and the results obtained are compared with the existing analytical, numerical, and experimental data. A sensitivity analysis is also performed to evaluate the effects of the size of the computational domain and other numerical parameters on the accuracy and performance of the solution algorithm. The present solution procedure is also extended to 3 dimensions and applied for computing the incompressible flow over a sphere. Indications are that the application of the preconditioning in the solution algorithm together with the high‐order discretization method in the generalized curvilinear coordinates provides an accurate and robust solution method for simulating the incompressible flows over practical geometries in a wide range of Reynolds numbers including the creeping flows.  相似文献   

17.
Abstract

This paper presents a hybrid spectral/finite volume method for steady-state compressible viscous flows. The method is evaluated for accuracy via test cases for various Mach numbers. The domain is divided into a viscous region and an inviscid region. The viscous region uses the full Navier-Stokes equations, while the inviscid region employs the Euler equations. A high order Chebyshev collocation spectral method is developed for the viscous region to resolve boundary layers. This method avoids the dense grids needed by finite-volume methods to resolve the viscous areas. A low order finite-volume method based on a Lax-Wendroff type scheme is employed for the inviscid region. A special interface formulation is developed for coupling the spectral with the finite-volume method. Comparisons with analytic results as well as convergence histories are presented.  相似文献   

18.
This paper uses the element‐free Galerkin (EFG) method to simulate 2D, viscous, incompressible flows. The control equations are discretized with the standard Galerkin method in space and a fractional step finite element scheme in time. Regular background cells are used for the quadrature. Several classical fluid mechanics problems were analyzed including flow in a pipe, flow past a step and flow in a driven cavity. The flow field computed with the EFG method compared well with those calculated using the finite element method (FEM) and finite difference method. The simulations show that although EFG is more expensive computationally than FEM, it is capable of dealing with cases where the nodes are poorly distributed or even overlap with each other; hence, it may be used to resolve remeshing problems in direct numerical simulations. Flows around a cylinder for different Reynolds numbers are also simulated to study the flow patterns for various conditions and the drag and lift forces exerted by the fluid on the cylinder. These forces are calculated by integrating the pressure and shear forces over the cylinder surface. The results show how the drag and lift forces oscillate for high Reynolds numbers. The calculated Strouhal number agrees well with previous results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
By analyzing the characteristics of low Mach number perfect gas flows, a novel Slightly Compressible Model (SCM) for low Mach number perect gas flows is derived. In view of numerical calculations, this model is proved very efficient, for it is kept within thep-v frame but does not have to satisfy the time consuming divergence-free condition in order to get the incompressible Navier-Stokes equation solution. Writing the equations in the form of conservation laws, we have derived the characteristic systems which are necessary for numerical calculations. A cell-centered finite-volume method with flux difference upwind-biased schemes is used for the equation solutions and a new Exact Newton Relaxation (ENR) implicit method is developed. Various computed results are presented to validate the present model. Laminar flow solutions over a circular cylinder with wake developing and vortex shedding are presented. Results for inviscid flow over a sphere are compared in excellent agreement with the exact analytic incompressible solution. Three-dimensional viscous flow solutions over sphere and prolate spheroid are also calculated and compared well with experiments and other incompressible solutions. Finally, good convergent performances are shown for sphere viscous flows. The project supported by the Basic Research on Frontier Problems in Fluid and Aerodynamics in China and the National Natural Science Foundation of China (19772069)  相似文献   

20.
This paper presents a new neural network‐boundary integral approach for analysis of steady viscous fluid flows. Indirect radial basis function networks (IRBFNs) which perform better than element‐based methods for function interpolation, are introduced into the BEM scheme to represent the variations of velocity and traction along the boundary from the nodal values. In order to assess the effect of IRBFNs, the other features used in the present work remain the same as those used in the standard BEM. For example, Picard‐type scheme is utilized in the iterative procedure to deal with the non‐linear convective terms while the calculation of volume integrals and velocity gradients are based on the linear finite element‐based method. The proposed IRBFN‐BEM is verified on the driven cavity viscous flow problem and can achieve a moderate Reynolds number of 1400 using a relatively coarse uniform mesh. The results obtained such as the velocity profiles along the horizontal and vertical centrelines as well as the properties of the primary vortex are in very good agreement with the benchmark solution. Furthermore, the secondary vortices are also captured by the present method. Thus, it appears that an ability to represent the boundary solution accurately can significantly improve the overall solution accuracy of the BEM. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号