首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Natural convection boiling of water and surfactant solutions in a confined space between two vertical plates was studied experimentally in the range of heat flux 19–170 kW/m2. The surfactant used was Alkyl (8–16) Glucoside having negligible environmental impact. The gap size was changed in the range of s = 1–80 mm, the concentration of surfactant solutions was changed in the range of C = 200–600 ppm. Generally, an addition of surfactant leads to an enhancement of heat transfer compared to water boiling at the same gap size. Enhancement of the heat transfer depending on the solution concentration at fixed gap size yields maximum value at the solution concentration close to the critical micelle concentration. The effect of confined space on a bubble dynamic was studied. Temperature field on the heater was determined using the infrared thermography technique. Quasi periodic wall temperature fluctuations were observed in the regime of high heat flux. An increase in the Bond number leads to an increase in the dimensionless frequency of the heated wall temperature fluctuations. The correlation between the dimensionless parameter of heat transfer and the Bond number under condition of quasi periodic boiling was derived and discussed.  相似文献   

2.
Natural convection boiling of water and surfactants at atmospheric pressure in narrow horizontal annular channels was studied experimentally in the range of Bond numbers Bo = 0.185–1.52. The flow pattern was visualized by high-speed video recording to identify the different regimes of boiling of water and surfactants. The channel length was 24 mm and 36 mm, the gap size was 0.45, 1.2, 2.2, and 3.7 mm. The heat flux was in the range of 20–500 kW/m2, the concentration of surfactant solutions was varied from 10 to 600 ppm. For water boiling at Bond numbers Bo < 1 the CHF in restricted space is lower than that in unconfined space. This effect increases with increasing the channel length. For water at Bond number Bo = 1.52, boiling can almost be considered as unconfined. Additive of surfactant led to enhancement of heat transfer compared to water boiling in the same gap size, however, this effect decreased with decreasing gap size. For the same gap size, CHF in surfactant solutions was significantly lower than that in water. Hysteresis was observed for boiling in degraded surfactant solutions.  相似文献   

3.
Subcooled flow boiling heat transfer for refrigerant R-134a in vertical cylindrical tubes with 0.83, 1.22 and 1.70 mm internal diameter was experimentally investigated. The effects of the heat flux, q″ = 1–26 kW/m2, mass flux, G = 300–700 kg/m2 s, inlet subcooling, ΔTsub,i = 5–15 °C, system pressure, P = 7.70–10.17 bar, and channel diameter, D, on the subcooled boiling heat transfer were explored in detail. The results are presented in the form of boiling curves and heat transfer coefficients. The boiling curves evidenced the existence of hysteresis when increasing the heat flux until the onset of nucleate boiling, ONB. The wall superheat at ONB was found to be essentially higher than that predicted with correlations for larger tubes. An increase of the mass flux leads, for early subcooled boiling, to an increase in the heat transfer coefficient. However, for fully developed subcooled boiling, increases of the mass flux only result in a slight improvement of the heat transfer. Higher inlet subcooling, higher system pressure and smaller channel diameter lead to better boiling heat transfer. Experimental heat transfer coefficients are compared to predictions from classical correlations available in the literature. None of them predicts the experimental data for all tested conditions.  相似文献   

4.
Experiments were performed to study enhancement of heat transfer from the wire of d = 50 µm and the tube of d = 1.5 mm in subcooled pool boiling by ultrasonic waves. The working fluids are clean water and Alkyl (8-16) Glucoside surfactant solutions of different concentrations and bulk temperature 30 °C. The wire resistance was translated to the temperature, using the calibration data, the temperature of the tube was measured by thermocouple. The differences between effect of ultrasonic field on boiling in water for heaters of d = 50 µm and d = 1.5 mm may be summarized as follows: for boiling on the wire of d = 50 µm in subcooled water, Tb = 30 °C, enhancement of heat transfer coefficient due to applied ultrasonic field is about 70% and 20% at heat flux q = 620 kW/m2 and q = 1350 kW/m2, respectively. For boiling in surfactant solutions at the same boiling conditions enhancement of heat transfer coefficient is in the range of 5–10% at heat flux q = 620 kW/m2 and 10–16% at heat flux q = 1350 kW/m2 depending on solution concentration. For boiling on the tube of d= 1.5 mm in subcooled water, Tb= 30 ℃, enhancement of heat transfer coefficient due to applied ultrasonic field is about 50% and 45% at heat flux q = 500 kW/m2 and q = 2500 kW/m2, respectively. The same values are obtained for boiling in surfactant solution of concentration C = 250 ppm. For the wire of d = 50 µm the heat transfer enhancement due to acoustic vibrations in surfactant solutions is not as strong as in water. This fact may be considered as evidence of significant role of relationship between jet flow and ultrasonic field.  相似文献   

5.
Effect of surfactant additives on nucleate pool boiling heat transfer of refrigerant-based nanofluid was investigated experimentally. Three types of surfactants including Sodium Dodecyl Sulfate (SDS), Cetyltrimethyl Ammonium Bromide (CTAB) and Sorbitan Monooleate (Span-80) were used in the experiments. The refrigerant-based nanofluid was formed from Cu nanoparticles and refrigerant R113. The test surface is horizontal with the average roughness of 1.6 μm. Test conditions include a saturation pressure of 101.3 kPa, heat fluxes from 10 to 80 kW m−2, surfactant concentrations from 0 to 5000 ppm (parts per million by weight), and nanoparticle concentrations from 0 to 1.0 wt.%. The experimental results indicate that the presence of surfactant enhances the nucleate pool boiling heat transfer of refrigerant-based nanofluid on most conditions, but deteriorates the nucleate pool boiling heat transfer at high surfactant concentrations. The ratio of nucleate pool boiling heat transfer coefficient of refrigerant-based nanofluid with surfactant to that without surfactant (defined as surfactant enhancement ratio, SER) are in the ranges of 1.12-1.67, 0.94-1.39, and 0.85-1.29 for SDS, CTAB and Span-80, respectively, and the values of SER are in the order of SDS > CTAB > Span-80, which is opposite to the order of surfactant density values. The SER increases with the increase of surfactant concentration and then decreases, presenting the maximum values at 2000, 500 and 1000 ppm for SDS, CTAB and Span-80, respectively. At a fixed surfactant concentration, the SER increases with the decrease of nanoparticle concentration. A nucleate pool boiling heat transfer correlation for refrigerant-based nanofluid with surfactant is proposed, and it agrees with 92% of the experimental data within a deviation of ±25%.  相似文献   

6.
An experimental investigation of inverted annular film boiling heat transfer has been performed for vertical up-flow in a round tube. The experiments used R-134a coolant and covered a pressure range of 640–2390 kPa (water equivalent range: 4000–14,000 kPa) and a mass flux range of 500–4000 kg m−2 s−1 (water equivalent range: 700–5700 kg m−2 s−1). The inlet qualities of the tests ranged from −0.75 to −0.03. The hot-patch technique was used to obtain the subcooled film boiling measurements. It was found that the heat transfer vs. quality curve can be divided into four different regions, each characterized by a different mechanisms and trends. These regions are dependent on pressure, mass flux and local quality. A detailed examination of the parametric trends of the heat transfer coefficient with respect to mass flux, inlet quality, heat flux and pressure was performed; reasonably good agreement between observed trends and those reported in the literature were noted.  相似文献   

7.
This article presents experiments conducted with two single rectangular mini-channels of same hydraulic diameter (1.4 mm) and different aspect ratios for conditions of horizontal boiling flow. The Forane® 365 HX used was subcooled (ΔTsub = 15 °C) for all the boiling curves presented in the paper. Local heat transfer coefficients were measured for heat flux ranging from 25 to 62 kW m−2 and mass flux from 200 kg m−2 s−1 to 400 kg m−2 s−1. The boiling flows were observed with two different cameras (depending on the flow velocity) through a visualization window. The flow patterns in the two channels were compared for similar conditions. The results show that the boiling heat transfer coefficient and the pressure drop values are different for the two single mini-channels. For low heat flux condition, the channel with lowest aspect ratio (H/W = 0.143) has a higher heat transfer coefficient. On the other hand, for high heat flux condition, the opposite situation occurs, namely the heat transfer coefficient becomes higher for the channel with highest aspect ratio (H/W = 0.43). This is probably due to the earlier onset of dryout in the channel with lowest aspect ratio. For the two cases of heating, the pressure drop for the two-phase flow remains lower for the channel with lowest aspect ratio. These results show that the aspect ratio plays a substantial role for boiling flows in rectangular channels. As for single-phase flows, the heat transfer characteristics are significantly influenced (even though the hydraulic diameter remains the same) by this parameter.  相似文献   

8.
This paper presents new experimental results for saturated nucleate boiling of FC72 and FC87 on a horizontal copper disc, at atmospheric pressure, for different degrees of confinement, s, in the range of 0.1-13 mm, and with two kinds of confining element, for low and moderated heat fluxes (?40 kW/m2), on both a downward and an upward facing heating surface. For low heat flux a decrease of the confinement gap causes an enhancement of the boiling and a decrease in the dryout heat flux. A visualization of the boiling phenomenon shows the effect of confinement and heat flux on the liquid-vapor configuration.  相似文献   

9.
Flow boiling heat transfer coefficients of CO2 have been measured in a single microchannel. Experiments were carried out in a horizontal stainless steel tube of 0.529 mm inner diameter, for three temperatures (−10, −5 and 0 °C), with the mass flux ranging from 200 to 1200 kg/m2 s and the heat flux varying from 10 to 30 kW/m2. The investigation covered qualities from zero to the dryout inception, i.e. pre-dryout conditions. Compared to larger microchannels and positive temperatures, a higher contribution of convective boiling was found, with a larger heat transfer coefficient than for pure nucleate boiling. Mainly two heat transfer regimes were found, depending on the boiling number (Bo). For Bo > 1.1 × 10−4, the heat transfer coefficient was highly dependent on the heat flux and moderately influenced by the quality and the mass flux. For Bo < 1.1 × 10−4, the heat transfer coefficient was hardly affected by the heat flux but strongly influenced by the quality and the mass flux. In addition, dryout results were reported. The effect of the mass flux on the dryout inception quality was found to be highly dependent on the heat flux and the saturation temperature.  相似文献   

10.
This paper experimentally investigates flow boiling characteristics in a cross-linked microchannel heat sink at low mass fluxes and high heat fluxes. The heat sink consists of 45 straight microchannels each with a hydraulic diameter of 248 μm and heated length of 16 mm. Three cross-links, of width 500 μm, are introduced in the present microchannel heat sink to achieve better temperature uniformity and to avoid flow mal-distribution. Flow visualization, flow instability, two-phase pressure drop, and two-phase heat transfer measurements are conducted using the dielectric coolant FC-72 over a range of heat flux from 7.2 to 104.2 kW/m2, mass flux from 99 to 290 kg/m2 s, and exit quality from 0.01 to 0.71. Thermochromic liquid crystals are used in the present study as full-field surface temperature sensors to map the temperature distribution on the heat sink surface. Flow visualization studies indicate that the observed flow regime is primarily slug. Visual observations of flow patterns in the cross-links demonstrate that bubbles nucleate and grow rapidly on the surface of the cross-links and in the tangential direction at the microchannels’ entrance due to the effect of circulations generated in those regions. The two-phase pressure drop strongly increases with the exit quality, at xe,o < 0.3, and the two-phase frictional pressure drop increases by a factor of 1.6–2 compared to the straight microchannel heat sink. The flow boiling heat transfer coefficient increases with increasing exit quality at a constant mass flux, which is caused by the dominance of the nucleation boiling mechanism in the cross-link region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号