首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
离散型湍流多相流动的研究进展和需求   总被引:2,自引:0,他引:2  
周力行 《力学进展》2008,38(5):610-622
离散型多相流动,指气体-颗粒(气-固)、液体-颗粒(液-固)、液体-气泡、气体-液雾以及气泡-液体-颗粒等两相或三相流动.这种类型的多相流动广泛存在于能源, 航天和航空, 化工和冶金,交通运输, 水利, 核能等领域.本文阐述了离散型多相流动的国内外基础研究,包括颗粒/液滴/气泡在流场中受流体动力作用力的研究, 颗粒-颗粒,液滴-液滴,气泡-气泡之间以及颗粒/液滴和壁面之间碰撞和聚集规律的研究,颗粒-气体和气泡-液体湍流相互作用的研究, 和数值模拟的研究,包括多相流动的雷诺平均模拟、大涡模拟和直接数值模拟的研究进展.最后, 归纳了目前尚待研究的需求.   相似文献   

2.
鼓泡流化床因其较高的传热特性以及较好的相间接触已经被广泛应用于工业生产中,而对鼓泡流态化气固流动特性的充分认知是鼓泡流化床设计的关键.在鼓泡流化床中,气泡相和乳化相的同时存在使得床中呈现非均匀流动结构,而这种非均匀结构给鼓泡流化床的数值模拟造成了很大的误差.基于此,以气泡作为介尺度结构,建立了多尺度曳力消耗能量最小的稳定性条件,构建了适用于鼓泡流化床的多尺度气固相间曳力模型.结合双流体模型,对A类和B类颗粒的鼓泡流化床中气固流动特性进行了模拟研究,分析了气泡速度、气泡直径等参数的变化规律.研究表明,与传统的曳力模型相比,考虑气泡影响的多尺度气固相间曳力模型给出的曳力系数与颗粒浓度的关系是一条分布带,建立了控制体内曳力系数与局部结构参数之间的关系.通过模拟得到的颗粒浓度和速度与实验的比较可以发现,考虑气泡影响的多尺度曳力模型可以更好地再现实验结果.通过A类和B类颗粒的鼓泡床模拟研究发现,A类颗粒的鼓泡床模拟受多尺度曳力模型的影响更为显著.   相似文献   

3.
气液两相流动与固壁相互作用耦合求解的研究   总被引:1,自引:0,他引:1  
气液两相流动与固壁相互作用的研究是液滴撞击壁面运动研究的重要基础.以结合了VOF和Level Set两种方法优点的用于气液相界面追踪的复合Level Set-VOF方法和利用唯象分析方法建立的能够反映接触角滞后性及壁面性质对润湿过程影响的壁面润湿模型为基础,提出了气液两相流动与固壁相互作用耦合求解流程,给出了气液两相流动与固壁相互作用耦合求解过程中接触线速度的计算方法及边界条件的确定方法.通过与已有实验结果的对比,对提出的气液两相流动与固壁相互作用耦合求解方法的有效性进行了验证.  相似文献   

4.
油-气润滑系统工作过程中,润滑油膜受微油滴冲击和压缩空气扰动影响易形成气泡夹带现象,气泡夹带行为将对壁面润滑油膜层的形成及流动过程产生重要影响。基于VOF数值模拟方法,对含气泡油膜沿倾斜壁面的流动行为进行研究,考察了气泡的存在对油膜形态和流动速度的影响规律,以及气泡破裂阶段空腔邻域内流体压力变化特性。研究表明,油膜夹带气泡的形变和迁移诱发气泡周围微流场的速度扰动现象,导致气液界面处产生非均匀速度梯度分布,进而引发油膜表面的形态波动。气泡发生破裂时,油膜空穴部位发生明显的正负压力波动现象,气泡附近壁面将承受一定的交变载荷作用。  相似文献   

5.
针对一种新型螺旋内槽管,采用先进的计算流体力学(CFD)数值模拟方法,对管内的气(天然气)-液(水)-固(水合物)三相流流动特性进行了模拟研究。模型采用欧拉-欧拉-欧拉三流体模型结合颗粒动力学的理论,考察了不同的表观速度(0.3 m/s,0.5 m/s,0.7 m/s),水合物粒径(500μm,750μm,1000μm),气泡大小(10μm,100μm,1000μm),螺距(400mm,800mm),螺纹头数(12,20)及螺纹旋向对于管内三相流动特性的影响。通过数值计算,由于气液固三相间的密度差,在螺旋内槽的作用下,水合物和天然气在管中心位置聚集,同时管壁处的含量减小。流体表观流速和气泡越大,壁面处的水合物和天然气的体积分数越小;由于天然气的密度小于水合物和水的密度,天然气更多集中在管中心,越靠近管壁含量越少;颗粒的粒径越大,壁面处的水合物含量越少,而对于天然气的分布则影响不大;螺距越小,螺纹头数越多,螺旋流强度越大,气液固三相分离效果越好,壁面处的水合物和天然气的含量越小;同时,螺纹旋向的改变对于三相的分离效果影响较小。  相似文献   

6.
针对一种新型螺旋内槽管,采用先进的计算流体力学(CFD)数值模拟方法,对管内的气(天然气)-液(水)-固(水合物)三相流流动特性进行了模拟研究。模型采用欧拉-欧拉-欧拉三流体模型结合颗粒动力学的理论,考察了不同的表观速度(0.3 m/s,0.5 m/s,0.7 m/s),水合物粒径(500 μm,750 μm,1000 μm),气泡大小(10 μm,100 μm,1000 μm),螺距(400 mm,800 mm),螺纹头数(12,20)及螺纹旋向对于管内三相流动特性的影响。通过数值计算,由于气液固三相间的密度差,在螺旋内槽的作用下,水合物和天然气在管中心位置聚集,同时管壁处的含量减小。流体表观流速和气泡越大,壁面处的水合物和天然气的体积分数越小;由于天然气的密度小于水合物和水的密度,天然气更多集中在管中心,越靠近管壁含量越少;颗粒的粒径越大,壁面处的水合物含量越少,而对于天然气的分布则影响不大;螺距越小,螺纹头数越多,螺旋流强度越大,气液固三相分离效果越好,壁面处的水合物和天然气的含量越小;同时,螺纹旋向的改变对于三相的分离效果影响较小。  相似文献   

7.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切-挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.   相似文献   

8.
基于液滴或气泡的多相微流控是近年来微流控技术中快速发展的重要分支之一.本文利用高速显微摄影技术和数字图像处理技术对T型微通道反应器内气液两相流动机制及影响因素进行实验研究.实验采用添加表面活性剂的海藻酸钠水溶液作为液相,空气作为气相.研究T型微通道反应器内气液两相流型的转变过程,并根据微通道内气泡的生成频率和生成气泡的长径比对气泡流进行分类.研究发现当前的进料方式下,可以观测到气泡流和分层流2种流型,且依据气泡生成频率和微通道内气泡的长径比可将气泡流划分为分散气泡流、短弹状气泡流和长弹状气泡流3种类型,并基于受力分析确定3种气泡流的形成机制分别为剪切机制、剪切–挤压机制和挤压机制.考察不同液相黏度和表面张力系数对不同类型气泡流范围的影响规律.结果表明:液相黏度相较于表面张力系数而言,对气泡流生成范围影响更大.给出不同类型气泡流流型转变条件的无量纲关系式,实现微通道生成微气泡过程的可控操作.  相似文献   

9.
曹骞  康灿  滕爽  焦侬  丁可金 《摩擦学学报》2022,42(6):1094-1104
为研究弯管内固体颗粒在液相夹带条件下的运动特性及颗粒对弯管内壁的磨损,采用计算流体动力学与离散元耦合的方法,建立数值模型,考虑固液两相之间的作用,对弯管内的固液两相流动进行数值模拟;通过软件的应用程序编程接口嵌入自编译磨损模型;借助试验结果,验证数值模型的有效性. 结果表明,所建立的数值模拟方案可以准确地模拟颗粒在管内的运动特征并能够预测弯管内壁的磨损位置以及磨损程度. 弯管内的二次流对颗粒运动有重要影响,弯管外侧壁面中心线附近的磨损较严重,磨损的形式以小角度划擦切削为主. 弯管磨损主要与颗粒对壁面的碰撞速度、碰撞角度及碰撞频率有关. 运动中的颗粒与壁面发生多次碰撞,碰撞角度逐渐减小. 随着颗粒球形度的增大,在相同碰撞条件下引起的磨损量变小,但是会降低颗粒的随流性. 颗粒形状影响颗粒在流场中的运动速度以及颗粒与壁面的碰撞. 随着颗粒球形度增大,严重磨损区域向弯管进口方向移动,壁面平均磨损量先减小后增大;当输送颗粒的球形度为0.91时,壁面磨损量最小.   相似文献   

10.
电流变液在两平行电极板间流动行为的实验研究   总被引:2,自引:0,他引:2  
通过实验的方法研究了电流变液流经两间距为1.1mm的平行电极板的流动行为,实验所观测到的由于电流变液在电场作用下非均匀固化所引起的固相颗粒淤积与饱和过程、河道分岔和失稳等现象,对现有的有关电流变阀均匀流动模型提出了质疑,这为进一步深入理解电流变液的力学行为,建立新的理论模型提供了实验依据  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号