首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The axisymmetric forced vibrations of a circular sandwich plate on an elastic foundation are studied. The plate is subjected to axisymmetric surface and mechanical loads with frequency equal to one of the natural frequencies of the plate. The foundation reaction is described by the Winkler model. To describe the kinematics of an asymmetric sandwich, the hypothesis of broken normal is used. The core is assumed to be light. The analytical solution of the problem is obtained and numerical results are analyzed  相似文献   

2.
This paper presents an analytical investigation on the buckling analysis of symmetric sandwich plates with functionally graded material (FGM) face sheets resting on an elastic foundation based on the first-order shear deformation plate theory (FSDT) and subjected to mechanical, thermal and thermo-mechanical loads. The material properties of FGM face sheets are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The core layer is still homogeneous and made of an isotropic material. An analytical approach is used to reduce the governing equations of stability and then solved using an analytical solution which is named as power series Frobenius method for symmetric sandwich plates with six different boundary conditions. A detailed numerical study is carried out to examine the influence of the plate aspect ratio, side-to-thickness ratio, loading type, sandwich plate type, volume fraction index, elastic foundation coefficients and boundary conditions on the buckling response of FGM sandwich plates. This has not been done before and serves to fill the gap of knowledge in this area.  相似文献   

3.
Natural frequencies are important dynamic characteristics of a structure. Therefore, the exact solution pertaining to free vibration of stepped circular plate elastically restrained against rotation, translation, and internal elastic ring support resting on an arbitrary variable elastic foundation using Green Function is presented in this paper. Thus, an accurate and direct modeling technique is introduced for modeling stepped circular plate on an arbitrary variable elastic foundation with arbitrary boundary conditions and internal elastic ring support. The effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and other parameters are assessed. Finally, some numerical examples are shown in order to present the efficiency and simplicity of the Green Function in the new formulation.  相似文献   

4.
Post-buckling behaviour of sandwich plates with functionally graded material (FGM) face sheets under uniform temperature rise loading is considered. It is assumed that the plate is in contact with a Pasternak-type elastic foundation during deformation, which acts in both compression and tension. The derivation of equations is based on the first-order shear deformation plate theory. Thermomechanical non-homogeneous properties of FGM layers vary smoothly by the distribution of power law across the thickness, and temperature dependency of material constituents is taken into account. Using the non-linear von-Karman strain-displacement relations, the equilibrium and compatibility equations of imperfect sandwich plates with FGM face sheets are derived. The boundary conditions for the plate are assumed to be simply supported in all edges. The governing equations are reduced to two coupled equation in terms of stress function and lateral deflection. Employing the single mode approach combined with Galerkin technique, an approximate closed-form solution is presented to calculate the critical buckling temperature and post-buckling equilibrium path of the plate. Presented numerical examples contain the influences of power law index, sandwich plate geometry, geometrical imperfection, temperature dependency, and the elastic foundation coefficients.  相似文献   

5.
The symmetric transverse vibrations of an elastic circular sandwich plate exposed to thermal and ionizing radiation are studied. The plate is on an inertialess Winkler foundation. The face layers are describe with the Kirchhoff hypotheses, while the light core with the hypothesis of broken normal. Analytical solutions are obtained. The numerical results are analyzed  相似文献   

6.
A contact problem of an axisymmetrically loaded flexible ring plate lying frictionlessly on an elastic half-space is considered. The plate subsidences are represented as a power series with unknown coefficients, which are determined by the Rayleigh-Ritz method using the minimum condition for the total strain energy of the plate and the elastic foundation. The method of orthogonal polynomials is used implicitly. Belarussian State Polytechnical Academy, Minsk 220027. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 193–198, January–February, 1999.  相似文献   

7.
The natural vibration of an elastic sandwich beam on an elastic foundation is studied. Bernoulli’s hypotheses are used to describe the kinematics of the face layers. The core layer is assumed to be stiff and compressible. The foundation reaction is described by Winkler’s model. The system of equilibrium equations is derived, and its exact solution for displacements is found. Numerical results are presented for a sandwich beam on an elastic foundation of low, medium, or high stiffness __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 5, pp. 57–63, May 2006.  相似文献   

8.
ABSTRACT

Application of the Galerkin method to various fluid and structural mechanics problems that are governed by a single linear or nonlinear differential equation is well known [1-5]. Recently, the method has been extended to finite element formulations [6-10], In this paper the suitability of the Galerkin method for solution of large deflection problems of plates is studied. The method is first applied to investigate large deflection behavior of clamped isotropic plates on elastic foundations. After validity of the method is established, it is then extended to analyze problems of large deflection of clamped skew sandwich plates, both with and without elastic foundations. The plates are considered to be subjected to uniformly distributed loads. The governing differential equations for the sandwich plate in terms of displacements in Cartesian coordinates are first established and then transformed into skew coordinates. The nonlinear differential equations of the plates are then transformed into nonlinear algebraic equations, using the Galerkin method. These equations are solved using a Newton-Raphson iterative procedure. The parameters considered herein for large deflection behavior of skew sandwich plates are the aspect ratio of the plate, Poisson's ratio, skew angle, shearing stiffnesses of the core, and foundation moduli. Numerical results are presented for skew sandwich plates for various skew angles and aspect ratios. Simplicity and quick convergence are the advantages of the method, in comparison with other much more laborious numerical methods that require extensive computer facilities.  相似文献   

9.
The bending response for exponentially graded composite (EGC) sandwich plates is investigated.The three-layer elastic/viscoelastic/elastic sandwich plate is studied by using the sinusoidal shear deformation plate theory as well as other familiar theories.Four types of sandwich plates are considered taking into account the symmetry of the plate and the thickness of each layer.The effective moduli and Illyushin’s approximation methods are used to solve the equations governing the bending of simply-supported EGC fiber-reinforced viscoelastic sandwich plates.Then numerical results for deflections and stresses are presented and the effects due to time parameter,aspect ratio,side-to-thickness ratio and constitutive parameter are investigated.  相似文献   

10.
An analysis of rotationally symmetric plates resting on an elastic subgrade is presented. The plates are made of an elastic, perfectly plastic material that obeys Johansen's yield condition and associated flow rule. The analysis is simplified by assuming that any plate element is either entirely elastic or entirely plastic. This assumption is practically fulfilled for a sandwich plate. Differential equations that describe the behavior of plastic zones during the deformation process are derived and solved in closed form. Examples of solutions for uniformly loaded circular plates are given.  相似文献   

11.
We consider thermomechanical bending of an elastoplastic circular (solid or annular) light-filler sandwich plate resting on an elastic base. The hypotheses of broken normal are used to describe the kinematics of the plate stack nonsymmetric along the thickness. The base reaction is described by the Winkler model. We obtain the system of equilibrium equations and its exact solution in terms of displacements. We also present numerical results for a sandwich annular metal-polymer plate.  相似文献   

12.
针对二级层级褶皱结构夹层板,通过变形协调研究了其等效弹性常数。首先对一级层级褶皱结构进行正交各向异性等效,得到一级等效弹性常数;将二级层级褶皱结构看成是由正交各向异性材料组成的三角形桁架夹心,将二级层级褶皱结构等效为均匀连续正交各向异性板,依据夹层板面板与夹心变形协调特点得到夹层板整体等效弹性常数。结合结构几何参数对等效公式的误差进行了讨论,并对等效公式做出修正。通过与数值分析结果对比,表明本文提出的等效公式具有较高精度。  相似文献   

13.
The elastoplastic bending of a sandwich bar with a stiff compressible core on an elastic foundation is studied. The kinematics of the bar, which is asymmetric across the thickness, is described adopting Bernoulli’s hypotheses for the face layers. The displacements of the core are assumed to vary linearly across the thickness. The foundation is described by the Winkler model. A system of equilibrium equations for displacements is derived and solved. Numerical results for a metal-polymer sandwich bar are presented __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 110–120, April 2007.  相似文献   

14.
Composite structures on an elastic foundation are being widely used in engineering applications. Bending response of inhomogeneous viscoelastic plate as a composite structure on a two-parameter (Pasternak’s type) elastic foundation is investigated. The formulations are based on sinusoidal shear deformation plate theory. Trigonometric terms are used in the present theory for the displacements in addition to the initial terms of a power series through the thickness. The transverse shear correction factors are not needed because a correct representation of the transverse shear strain is given. The interaction between the plate and the foundation is included in the formulation with a two-parameter Pasternak’s model. The effective moduli and Illyushin’s approximation methods are used to derive the viscoelastic solution. The effects played by foundation stiffness, plate aspect ratio, and other parameters are presented.  相似文献   

15.
A finite element method of analysis of the vibrational and wave propagational characteristics is presented for a laminated orthotropic plate under initial stress. The plate may have an arbitrary number of bonded elastic orthotropic layers, each with distinct thickness, density and mechanical properties, and the analysis is capable of treating a completely arbitrary three-dimensional state of initial stress. Biot's theory for incremental elastic deformations of a stressed solid forms the basis for this study. A homogeneous, isotropic plate under two different states of initial stress was analyzed and their numerical results showed excellent correlation with those from an exact solution. Further examples of a three layer composite plate and a sandwich plate are offered to add some general insight to the physical behavior of such plates.  相似文献   

16.
The mixed first-order shear deformation plate theory(MFPT) is employed to study the bending response of simply-supported orthotropic plates.The present plate is subjected to a mechanical load and resting on Pasternak’s model or Winkler’s model of elastic foundation or without any elastic foundation.Several examples are presented to verify the accuracy of the present theory.Numerical results for deflection and stresses are presented.The proposed MFPT is shown simplely to implement and capable of giving satisfactory results for shear deformable plates under static loads and resting on two-parameter elastic foundation.The results presented here show that the characteristics of deflection and stresses are significantly influenced by the elastic foundation stiffness,plate aspect ratio and side-to-thickness ratio.  相似文献   

17.
The paper describes the processes of elastic deformation of thin films under mechanical loading. The film is modeled longitudinally by a compressed plate arranged on an elastic foundation. A computer model of the buckling of the narrow thin plate with a delamination portion located on an elastic foundation is constructed. This paper also touches upon the supercritical behavior of the plate–substrate system. The experiments on the axial compression of a metal strip adhered to a rubber plate are performed, and 2 to 7 buckling modes are obtained therein. The critical loads and buckling modes obtained in the numerical calculations are compared with the experimental data. It is shown that there is the possibility of progressive delamination of the metal plate from the foundation if the critical load is exceeded. It is found that the use of the proposed approach, which, in contrast to other approaches, accounts for the elastic deformation of the substrate, causes the dependence between the critical bending stress and the stiffness of the foundation.  相似文献   

18.
An analytical model is developed to assess the elastic-plastic dynamic response of fully backed sandwich plates under localized impulse load.The core is modeled as an elastic-perfectly plastic foundation.The top face sheet is treated as an individual plate resting on the foundation.The elastic-plastic analysis for the top face sheet is based on a minimum principle in dynamic plasticity associated with the finite difference technique.The effects of spatial and temporal distributions of the impulsive loading on the dynamic response of sandwich plates are discussed.The model can be used to predict the impulse-induced local effect on fully backed sandwich plates.  相似文献   

19.
The paper studies axisymmetric resonance vibrations of an elastic circular sandwich plate under local periodic surface loads of rectangular, sinusoidal, and parabolic forms. The hypotheses of broken normal are used to describe the kinematics of the plate, which is asymmetric in thickness. The core is assumed to be light. The initial–boundary-value problems are solved analytically. The solutions are analyzed  相似文献   

20.
In this paper, an expression is derived for the natural frequencies of vibration of a simply supported sandwich plate. Experimental procedures and results for the subject problem are presented. The experimental data obtained are in good agreement with the theoretical results. A literature survey1, 2 shows that no work has been done on the experimental determination of natural frequencies of vibration of sandwich plates. A general analysis of flexural vibrations of elastic sandwich plates was presented by Yu in Ref. 3. The vibration analysis based upon this theory is, in general, very complicated due to the high order of the equations. It was then simplified4 for low-frequency ranges and for ordinary sandwich plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号