共查询到18条相似文献,搜索用时 192 毫秒
1.
2.
一种结构可靠性指标的搜索方法 总被引:1,自引:0,他引:1
提出了一种计算结构可靠性指标的搜索方法,即自动变步长搜索方法。该方法克服一次二阶矩方法的缺点,对于非线性功能函数非常有效。数值例题表明:这种方法具有很好的收敛性和较高的计算精度,且其收敛性与初始步长无关,可以用于复杂问题可靠度的分析。 相似文献
3.
动力模型修正中逆特征值问题的数值解法 总被引:3,自引:0,他引:3
本文提出了一种参数型模型修正的方法,因为这种方法与经典的逆特征值问题的提供是一致的,所以先建立起与逆问题等价的关于设计参数的非线性方程组,然后构造出可以用Newtow法求解的格式。数值仿真结果表明本文方法具有较好的收敛性和较高的计算精度。 相似文献
4.
5.
空间索形悬索桥的主缆、吊索相互耦合,用数值解析法精确求解其初始平衡状态时,面临收敛困难、算法要求严格的问题。本文建立了空间缆索的平衡方程,推导了误差调整方程。分别证明了平面索形所常用的线形变化刚度法及影响矩阵法在空间索形中不再适用。基于可调参数的Steffens-Newton法,提出一种高效的空间缆索耦合体系分析方法,编程SN-ECFS进行算例分析。通过与模式搜索法比较,验证了该方法的计算精度和收敛效率。 相似文献
6.
7.
8.
等截面梁有限变形的传递函数增量算法 总被引:2,自引:1,他引:1
本文介绍了一种计算等截面梁有限变形的新方法-传递函数增量算法,它是一种半解析数值计算方法。此算法充分利用增量失空法Gauss求积公式计算非线性有限变形的特点,并将这些特点与传递函数方法,有效地结合起来,既避免了数值方法计算量大的困难,又使得求解高阶非线性微分方程的解析解成为可能,算例分析表明,这是一种易编程,计算量小,收敛快,求解精度高的行之有效的计算方法。 相似文献
9.
基于对偶变量变分原理,选择积分区间两端位移为独立变量,构造了求解完整约束哈密顿动力系统的高阶保辛算法。首先,利用拉格朗日多项式对作用量中的位移、动量及拉格朗日乘子进行近似;然后,对作用量中不包含约束的积分项采用Gauss积分近似,对作用量中包含约束的积分项采用Lobatto积分近似,从而得到近似作用量;最后,在此近似作用量的基础上,利用对偶变量变分原理,将求解完整约束哈密顿动力系统问题转化为一组非线性方程组的求解。算法具有保辛性和高阶收敛性,能够在位移的插值点处高精度地满足完整约束。算法的收敛阶数及数值性质通过数值算例验证。 相似文献
10.
结构可靠度计算常采用经典的响应面法拟合隐式功能函数或高维功能函数,而对于强非线性功能函数的实际工程问题,尽管其能够计算出结构可靠度的结果,但此时多项式响应面的拟合精度不够,很容易造成不收敛的现象。为了解决上述问题,将响应面法与单纯形寻优的思路进行结合来探求一种有效的计算方法。本文利用单纯形算法对每次迭代的验算点进行优化;再以优化后的设计验算点为中心进行取样,利用响应面法循环迭代计算;最后,沿着真实响应面逐渐逼近最终的验算点。该方法能够解决高维非线性的隐式极限状态方程可靠度计算收敛性的问题,可以提高计算精度和计算效率,具有一定的工程适用性。 相似文献
11.
Matthew Balhoff Daniel Sanchez-Rivera Alan Kwok Yashar Mehmani Ma?a Prodanovi? 《Transport in Porous Media》2012,93(3):363-379
Many applications involve the flow of non-Newtonian fluids in porous, subsurface media including polymer flooding in enhanced oil recovery, proppant suspension in hydraulic fracturing, and the recovery of heavy oils. Network modeling of these flows has become the popular pore-scale approach for understanding first-principles flow behavior, but strong nonlinearities have prevented larger-scale modeling and more time-dependent simulations. We investigate numerical approaches to solving these nonlinear problems and show that the method of fixed-point iteration may diverge for shear-thinning fluids unless sufficient relaxation is used. It is also found that the optimal relaxation factor is exactly equal to the shear-thinning index for power-law fluids. When the optimal relaxation factor is employed it slightly outperforms Newton??s method for power-law fluids. Newton-Raphson is a more efficient choice (than the commonly used fixed-point iteration) for solving the systems of equations associated with a yield stress. It is shown that iterative improvement of the guess values can improve convergence and speed of the solution. We also develop a new Newton algorithm (Variable Jacobian Method) for yield-stress flow which is orders of magnitude faster than either fixed-point iteration or the traditional Newton??s method. Recent publications have suggested that minimum-path search algorithms for determining the threshold pressure gradient (e.g., invasion percolation with memory) greatly underestimate the true threshold gradient when compared to numerical solution of the flow equations. We compare the two approaches and reach the conclusion that this is incorrect; the threshold gradient obtained numerically is exactly the same as that found through a search of the minimum path of throat mobilization pressure drops. This fact can be proven mathematically; mass conservation is only preserved if the true threshold gradient is equal to that found by search algorithms. 相似文献
12.
求解非线性方程组的混沌粒子群算法及应用 总被引:1,自引:1,他引:0
针对非线性方程组的求解在工程上具有广泛的实际意义,经典的数值算法如牛顿法存在其收敛性依赖于初值而实际计算中初值难确定的问题,提出以混沌粒子群算法求解非线性方程。它通过将混沌搜索机制有机地引入粒子群算法,使每个粒子从混沌搜索机制与粒子群算法搜索机制中获得适当的搜索方向,以混沌变量的遍历性增强粒子的搜索性能与更全面地应用目标函数的信息,并反映到逐代更新的个体极值和群体极值中,可更有效地调整粒子的移向并最终获得最优解。测试结果表明这一尝试的有效性。最后将所提的方法用于建立复合材料结构的疲劳寿命与应力、温度、湿度的关系模型。 相似文献
13.
14.
Nonlinear chaotic systems yield many interesting features related to different physical phenomena and practical applications. These systems are very sensitive to initial conditions at each time-iteration level in a numerical algorithm. In this article, we study the behavior of some nonlinear chaotic systems by a new numerical approach based on the concept of Galerkin–Petrov time-discretization formulation. Computational algorithms are derived to calculate dynamical behavior of nonlinear chaotic systems. Dynamical systems representing weather prediction model and finance model are chosen as test cases for simulation using the derived algorithms. The obtained results are compared with classical RK-4 and RK-5 methods, and an excellent agreement is achieved. The accuracy and convergence of the method are shown by comparing numerically computed results with the exact solution for two test problems derived from another nonlinear dynamical system in two-dimensional space. It is shown that the derived numerical algorithms have a great potential in dealing with the solution of nonlinear chaotic systems and thus can be utilized to delineate different features and characteristics of their solutions. 相似文献
15.
自适应免疫遗传算法 总被引:8,自引:0,他引:8
遗传算法(GA)是基于自然遗传规则随机搜索技术的一种进化算法,但是随着实际结构的大型化和复杂化,它往往出现过早收敛的现象。在研究了算法的编码方式、控制参数和算子操作之后,就其全局收敛性的不足,提出动态自适应策略以改进其性能,在基本遗传算子的基础上,采用了免疫遗传算子和保优策略。其中免疫算子可以防止交叉变异中的个体退化,自适应策略则保持了种群的多样性,以此保证遗传算法尽快收敛到全局最优解,称之为自适应免疫遗传算法(AIGA)。随后以经典的十杆桁架结构优化问题作为例子说明算法的优越性,结果表明AIGA在随机结构优化中计算有效、结果可靠。 相似文献
16.
Evolutionary algorithms mimic the process of natural evolution governed by the ‘survival of the fittest’ principle. In this work, a genetic algorithm (GA) is successfully used to solve problems in potential flow in a gradual contraction, viscous flow over a backward facing step, and non‐Newtonian flow using the power law model. Specifically, the GA heuristically searches the domain for potential solutions, precluding many convergence difficulties associated with the stiffness of a problem. The GA was able to solve problems that the gradient‐based method could not mainly because of its relative indifference to regions of high gradients when performing the search and that systems of discretized equations are never actually solved. The GA exhibited excellent scalability properties for solving problems with a large number of nodes. These results show evolutionary techniques to be of great utility in solving stiff problems in fluid flow. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献
17.
18.
将前向神经网络用于捷联惯性导航系统(SINS)的对准问题。首先,运用递阶遗传算法(HGA)优化神经网络(NNW)的拓扑结构,并对网络其余参数进行全局粗调;然后运用H滤波算法对具有最优结构的神经网络的其余参数在线自适应精调,并对这一过程与常规算法进行了计算机仿真比较。仿真结果表明:该算法能根据实际问题自适应确定网络结构,而且精度、实时性与常规方法相仿。 相似文献