首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
In this paper, the postbuckling behavior of rectangular orthotropic laminated composite plates with initial imperfections under inplane shear load is investigated in a closed-form analytical manner. The plates under consideration are assumed to be infinitely long in the longitudinal direction. At the longitudinal edges, two different sets of boundary conditions are considered, specifically 1) simply supported edges and 2) fully clamped edges. Using Timoshenko-type shape functions for both the initial bifurcational buckling analysis and the subsequent Marguerre-type postbuckling studies, closed-form analytical solutions for the buckling loads and for the postbuckling state variables are derived. A comparison with geometrically non-linear finite element computations shows that the derived analysis approaches are suitable for postbuckling studies in load ranges not too far beyond bifurcational buckling as they are currently relevant for e.g., composite airframe structural analysis and design. Due to their strictly closed-form analytical nature, the presented analysis methods can be used conveniently in engineering practice for all application purposes where computational time is a crucial factor, especially for preliminary analysis and design or optimization procedures.  相似文献   

2.
The buckling of thin gel film has attracted much attention due to its applications in the design of threedimensional structure from two-dimensional template. We have established an analytical model to study the swelling-induced buckling of a thin gel strip with one edge clampecd and the others free. The closed-form solutions for the amplitude and wavelength of the buckled shape are obtained by energy minimization of the total potential energy. The analytical results agree well with finite element analysis based on the inhomogeneous gel theory without any parameter fitting. The model provides a route to study complex postbuckling behaviors of thin gel films and guidelines to design the buckled configuration quantitatively by controlling the swelling ratio.  相似文献   

3.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

4.
Abstract

The modified potential energy approach to the nonlinear analysis of slender elastic beams is employed to investigate the buckling and postbuckling behavior of two symmetric plane frames, namely a hinged portal frame and a hinged two-bar frame, The beams are assumed to be inextensible and shear undeformable. The “hybrid” functional on which the present analysis is based according to a Koiter-type energy approach is obtained from the total potential energy functional by adding extra terms which account for the nonlinear energy associated with the internal forces applied at the beam ends. Thus the nonlinear constraints on the potential energy (expressed in terms of the cross-section rotation φ only), which are associated with the continuity condition relative to the axial and lateral displacement across the joints, are accounted for by introducing the corresponding joint forces as Lagrangian multipliers. The inherent simplicity of the proposed beam model facilitates the postbuckling analysis of the two structures up to and including fourth order terms. A number of diagrams illustrate the results obtained.  相似文献   

5.
In the traditional continuum mechanics, the effects of surface free energy are generally ignored. However, this cannot be the case for nanostructures because of their high surface to volume ratio; surface energy plays an important role in the mechanical responses. In the present study, the nonlinear buckling and postbuckling characteristics of cylindrical nanoshells subjected to combined axial and radial compressions are investigated in the presence of surface energy effects. To this end, Gurtin–Murdoch elasticity theory is implemented into the classical first-order shear deformation shell theory to develop an efficient size-dependent shell model incorporating surface free energy effects. Subsequently, a boundary layer theory is employed including surface effects in conjunction with the nonlinear prebuckling deformations, the large postbuckling deflections and the initial geometric imperfection. Finally, a solution methodology based on a two-stepped singular perturbation technique is utilized to obtain the size-dependent critical buckling loads and equilibrium postbuckling paths corresponding to the both axial dominated and radial dominated loading cases. It is observed that for the both axial dominated and radial dominated loading cases, surface free energy effects cause to increase the both critical buckling load and critical end-shortening of shear deformable nanoshell made of silicon.  相似文献   

6.
This paper analyzes the nonlocal thermal buckling and postbuckling behaviors of a multi-layered graphene nanoplatelet(GPL) reinforced piezoelectric micro-plate. The GPLs are supposed to disperse as a gradient pattern in the composite micro-plate along its thickness. The effective material properties are calculated by the Halpin-Tsai parallel model and mixture rule for the functionally graded GPL reinforced piezoelectric(FG-GRP) micro-plate. Governing equations for the nonlocal thermal buckling a...  相似文献   

7.
The objective of the present investigation is to predict the nonlinear buckling and postbuckling characteristics of cylindrical shear deformable nanoshells with and without initial imperfection under hydrostatic pressure load in the presence of surface free energy effects.To this end, Gurtin-Murdoch elasticity theory is implemented into the irst-order shear deformation shell theory to develop a size-dependent shell model which has an excellent capability to take surface free energy effects into account. A linear variation through the shell thickness is assumed for the normal stress component of the bulk to satisfy the equilibrium conditions on the surfaces of nanoshell. On the basis of variational approach and using von Karman-Donnell-type of kinematic nonlinearity, the non-classical governing differential equations are derived. Then a boundary layer theory of shell buckling is employed incorporating the effects of surface free energy in conjunction with nonlinear prebuckling deformations, large delections in the postbuckling domain and initial geometric imperfection. Finally, an eficient solution methodology based on a two-stepped singular perturbation technique is put into use in order to obtain the critical buckling loads and postbuckling equilibrium paths corresponding to various geometric parameters. It is demonstrated that the surface free energy effects cause increases in both the critical buckling pressure and critical end-shortening of a nanoshell made of silicon.  相似文献   

8.
钢衬壳热屈曲问题是核工程安全壳设计中的主要问题,但实验研究方面的文章发表得不多文中以200兆瓦核电站安全壳中钢衬壳为研究对象,采用局部1:1模型,测得了钢衬壳热屈曲温度和应变载荷,给出了钢衬壳屈曲和初始后屈曲过程中挠度和温度关系、以及膜应变和温度关系,实验测得钢衬壳具有局域屈曲的现象,实验屈曲载荷与理论结果符合较好  相似文献   

9.
The thermal buckling and postbuckling analysis of laminated composite beams with temperature-dependent material properties is presented. The governing equations are based on the first-order shear deformation beam theory (FSDT) and the geometrical nonlinearity is modeled using Green's strain tensor in conjunction with the von Karman assumptions. The differential quadrature method (DQM) as an accurate, simple and computationally efficient numerical tool is adopted to discretize the governing equations and the related boundary conditions. A direct iterative method is employed to obtain the critical temperature (bifurcation point) as well as the nonlinear equilibrium path (the postbuckling behavior) of symmetrically laminated beams. The applicability, rapid rate of convergence and high accuracy of the method are established via different examples and by comparing the results with those of existing in literature. Then, the effects of temperature dependence of the material properties, boundary conditions, length-to-thickness ratios, number of layers and ply angle on the thermal buckling and postbuckling characteristic of symmetrically laminated beams are investigated.  相似文献   

10.
The postbuckling behavior of a one-bay, two-storey frame with built-in edges and symmetric with respect to midspan is analyzed. Columns are assumed to be inextensible and shear-undeformable, and beams are rigid. Then two buckling modes are possible, that is, sidesway of the lower floor with rigid horizontal displacement of the top floor and sidesway of the top floor with the lower floor undergoing no displacement. Obviously, the two buckling modes occur simultaneously if the ratios EI/h7 (EI being the bending stiffness of a column and h its length) are properly selected. Within the framework of a Koiter-type energy approach a suitable perturbation formulation is derived from a “hybrid” functional which is obtained by adding to the potential energy certain extra terms which account for the nonlinear energy associated with the internal forces applied to the beam at the joints. Results show that the postbuckling behavior of a single buckling mode can be stable or unstable according to the value of the ratio h/l, where l is the frame span. In the case of simultaneous buckling modes the structural behavior in the postbuckling range never improves, but no severe changes are noticed in comparison with the preceding case.  相似文献   

11.
A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length subjected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the functionally graded shell.  相似文献   

12.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedpanelshavebeenwidelyusedintheaerospace,marine ,automobileandotherengineeringindustries .Theproblemofbucklingandpostbucklingofcylindricalpanelsunderaxialcompressionortorsionhasbeenextensivelystudied .Incontrast,theliteratureoncylindricalpanelsunderpressureloadingisrelativelyspares.Thesestudiesincludealinearbucklinganalysis (Singeretal.[1]) ,anonlinearbucklinganalysi(YamadaandCroll[2 ]) ,anelastoplasticbucklinganalysisusingreducedstif…  相似文献   

13.
The static stability of thin-walled composite beams, considering shear deformation and geometrical non-linear coupling, subjected to transverse external force has been investigated in this paper. The theory is formulated in the context of large displacements and rotations, through the adoption of a shear deformable displacement field (accounting for bending and warping shear) considering moderate bending rotations and large twist. This non-linear formulation is used for analyzing the prebuckling and postbuckling behavior of simply supported, cantilever and fixed-end beams subjected to different load condition. Ritz's method is applied in order to discretize the non-linear differential system and the resultant algebraic equations are solved by means of an incremental Newton-Rapshon method. The numerical results show that the beam loses its stability through a stable symmetric bifurcation point and the postbuckling strength is in relation with the buckling load value. Classical predictions of lateral buckling are conservative when the prebuckling displacements are not negligible and the non-linear buckling analysis is required for reliable solutions. The analysis is supplemented by investigating the effects of the variation of load height parameter. In addition, the critical load values and postbuckling response obtained with the present beam model are compared with the results obtained with a shell finite element model (Abaqus).  相似文献   

14.
A postbuckling analysis is presented for a functionally graded cylindrical panel of finite length subjected to axial compression in thermal environments. Material properties are assumed to be temperature dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The governing equations of a functionally graded cylindrical panel are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell-type of kinematic nonlinearity and including thermal effects. Two cases of the in-plane boundary conditions are considered. The nonlinear prebuckling deformations and initial geometric imperfections of the panel are both taken into account. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical panels under axial compression. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of axially loaded, perfect and imperfect, functional graded cylindrical panels with two constituent materials and under different sets of thermal environments. The influences played by temperature rise, volume fraction distributions, the character of in-plane boundary conditions, transverse shear deformation, panel geometric parameters, as well as initial geometric imperfections are studied.  相似文献   

15.
Kármán-type nonlinear large deflection equations are derived occnrding to the Reddy’s higher-order shear deformation plate theory and used in the thermal postbuckling analysis The effects of initial geometric imperfections of the plate areincluded in the present study which also includes th thermal effects.Simply supported,symmetric cross-ply laminated plates subjected to uniform or nomuniform parabolictemperature distribution are considered. The analysis uses a mixed GalerkinGolerkinperlurbation technique to determine thermal buckling louds and postbucklingequilibrium paths.The effects played by transverse shear deformation plate aspeclraio, total number of plies thermal load ratio and initial geometric imperfections arealso studied.  相似文献   

16.
The size-dependent nonlinear buckling and postbuckling characteristics of circular cylindrical nanoshells subjected to the axial compressive load are investigated with an analytical approach. The surface energy effects are taken into account according to the surface elasticity theory of Gurtin and Murdoch. The developed geometrically nonlinear shell model is based on the classical Donnell shell theory and the von K′arm′an's hypothesis. With the numerical results, the effect of the surface stress on the nonlinear buckling and postbuckling behaviors of nanoshells made of Si and Al is studied. Moreover, the influence of the surface residual tension and the radius-to-thickness ratio is illustrated.The results indicate that the surface stress has an important effect on prebuckling and postbuckling characteristics of nanoshells with small sizes.  相似文献   

17.
The initial buckling load of curved panels under compressive loads is substantially reduced by the existence of imperfections, in particular geometric imperfections. It is therefore essential that these imperfections are considered in analysing components which incorporate such panels in order to accurately predict their buckling behaviour. Finite element analysis allows fully non-linear analysis of shells containing geometric imperfections, however, to obtain accurate results information is required on the exact size and shape of the imperfection to be modelled. In most cases this data is not available. It is therefore generally recommended that the imperfections are modelled on the first eigenmode and have an amplitude selected according to the manufacturing procedure. This paper presents the effects of varying imperfection shape and amplitude on the buckling and postbuckling behaviour of one specific case, a curved panel under combined shear and compression, to test the accuracy of such recommendations.  相似文献   

18.
A thermal postbuckling analysis is presented for a moderately thick rectangular plate subjected to (1) uniform and non-uniform tent-like temperature loading; and (2) combined axial compression and uniform temperature loading. The initial geometrical imperfection of plate is taken into account. The formulations are based on the Reissner-Mindlin plate theory considering the effects of rotary inertia and transverse shear deformation. The analysis uses a deflection-type perturbation technique to determine the thermal buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of perfect and imperfect, moderately thick rectangular plates and are compared with the results predicted by the thin plate theory.  相似文献   

19.
The postbuckling behavior of an asymmetric one-bay, two-storey frame with clamped edges is analyzed. Columns have different bending stiffnesses and are pairwise of the same length. By assuming columns to be inextensible and shear undeformable, and beams to be rigid, two buckling modes are possible which are described by the sidesway of the lower floor with a rigid horizontal displacement of the upper floor and a sidesway of the upper floor, the lower floor undergoing no displacement. By properly selecting the ratios EI/h2 (EI being the bending stiffness of a column and h its length) the two buckling modes may occur simultaneously. A third buckling mode is also possible which is characterized by no displacement of the horizontal beams and local deflection of one or more columns in the shape of a beam with fixed edges. This third case will not be considered in this paper. The Koiter general nonlinear theory of elastic stability recast in a form convenient for the development of finite elment models along lines similar to the recent presentation by Budiansky has been employed in the analysis. Nonlinear constraints on the field variable φ (φ being the cross-section rotation) are accounted for by means of Lagrangian multipliers. Results show that the postbuckling behavior of a single buckling mode is always asymmetric unstable and depends both on the degree of asymmetry of the structure and on the ratio h/l, l being the frame span. The occurrence of simultaneous buckling modes exacerbates the imperfection sensitivity of the structure.  相似文献   

20.
A postbuckling analysis is presented for a simply supported, shear deformable functionally graded plate with piezoelectric actuators subjected to the combined action of mechanical, electrical and thermal loads. The temperature field considered is assumed to be of uniform distribution over the plate surface and through the plate thickness and the electric field considered only has non-zero-valued component EZ. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and the material properties of both FGM and piezoelectric layers are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The initial geometric imperfection of the plate is taken into account. Two cases of the in-plane boundary conditions are considered. A two step perturbation technique is employed to determine buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, geometrically mid-plane symmetric FGM plates with fully covered or embedded piezoelectric actuators under different sets of thermal and electric loading conditions. The effects played by temperature rise, volume fraction distribution, applied voltage, the character of in-plane boundary conditions, as well as initial geometric imperfections are studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号