首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Composites made of semi-crystalline polymers and nanoparticles have a spherulitic microstructure which can be reasonably represented by a spherically anisotropic volume element. Due to the high surface-to-volume ratio of a nanoparticle, the particle-matrix interface stress, usually neglected in determining the effective elastic moduli of particle-reinforced composites, may have a non-negligible effect. To account for the latter in estimating the effective thermoelastic properties of a composite consisting of nanoparticles embedded in a semi-crystalline polymeric matrix, this work adopts a coherent interface model for the nanoparticle-matrix interface and proposes an extended version of the classical generalized-self consistent method. In particular, Eshelby's formulae widely used to calculate the elastic energy change of a homogeneous medium due to the introduction of an inhomogeneity are extended to the thermoelastic case. The nanoparticle size effect on the effective thermoelastic moduli of the composite are theoretically shown and numerically illustrated.  相似文献   

2.
An elastoplastic damage model considering progressive imperfect interface is proposed to predict the effective elastoplastic behavior and multi-level damage progression in fiber-reinforced metal matrix composites (FRMMCs) under transverse loading. The modified Eshelby’s tensor for a cylindrical inclusion with slightly weakened interface is adopted to model fibers having mild or severe imperfect interfaces [Lee, H.K., Pyo, S.H., 2009. A 3D-damage model for fiber-reinforced brittle composites with microcracks and imperfect interfaces. J. Eng. Mech. ASCE. doi:10.1061/(ASCE)EM.1943-7889.0000039]. An elastoplastic model is derived micromechanically on the basis of the ensemble-volume averaging procedure and the first-order effects of eigenstrains. A multi-level damage model [Lee, H.K., Pyo, S.H., 2008a. Multi-level modeling of effective elastic behavior and progressive weakened interface in particulate composites. Compos. Sci. Technol. 68, 387–397] in accordance with the Weibull’s probabilistic function is then incorporated into the elastoplastic multi-level damage model to describe the sequential, progressive imperfect interface in the composites. Numerical examples corresponding to uniaxial and biaxial transverse tensile loadings are solved to illustrate the potential of the proposed micromechanical framework. A series of parametric analysis are carried out to investigate the influence of model parameters on the progression of imperfect interface in the composites. Furthermore, a comparison between the present prediction and experimental data in the literature is made to assess the capability of the proposed micromechanical framework.  相似文献   

3.
The rigorous classical bounds of elastic composite materials theory provide limits on the achievable composite stiffnesses in terms of the properties and arrangements of the composite's constituents. These bounds result from the assumption, presumably made for stability reasons, that each constituent material must have positive-definite elastic moduli. If this assumption is relaxed, recently published elasticity analyses and experimental measurements show these bounds can be greatly exceeded, resulting in new materials of enormous potential.The key question is whether a composite material having a non-positive-definite constituent can be stable overall in the practically useful situation of applied traction boundary conditions. Drugan [2007. Elastic composite materials having a negative-stiffness phase can be stable. Phys. Rev. Lett. 98 (5), article no. 055502] first proved the answer is yes, by applying the energy criterion of elastic stability to the basic two- and three-dimensional composites consisting of a cylinder or sphere having non-positive-definite (but strongly elliptic) moduli with a thin positive-definite coating and proving overall stability provided the coating is sufficiently stiff.Here, we perform a complete and direct dynamic stability analysis of the plane strain fundamental elastic composite consisting of a circular cylinder of non-positive-definite material firmly bonded to a positive-definite concentric coating, for the full range of coating thicknesses (i.e., volume fractions). We determine quantitatively the full permissible range of inclusion and coating moduli, as a function of coating thickness, for which the overall composite is stable under dead traction boundary conditions. Among the results, we show that in the thin-coating case, the present dynamic stability analysis leads to precisely the same analytical stability requirements as those derived via the energy criterion by Drugan [2007. Elastic composite materials having a negative-stiffness phase can be stable. Phys. Rev. Lett. 98 (5), article no. 055502], and we derive new analytical stability requirements that are valid for a wider range of coating thickness. At the other extreme, we show that in the case of very thick coatings (corresponding to the dilute case of a matrix-inclusion composite), even an inclusion with merely strongly elliptic moduli can be stabilized by a positive-definite matrix satisfying weak requirements, for which we derive analytical expressions. Overall, our results show that surprisingly weak restrictions on the moduli and thickness of the positive-definite coating are sufficient to stabilize a non-positive-definite inclusion, even one whose moduli are merely strongly elliptic. These results legitimize expanding the search for novel materials with extreme properties to those incorporating a non-positive-definite constituent, and they provide quantitative restrictions on the constituent materials’ moduli and volume fractions, for the geometry examined here, that ensure overall stability of such composite materials.  相似文献   

4.
In this article a fibre-reinforced composite material is modelled via an approach employing a representative volume element with periodic boundary conditions. The effective elastic moduli of the material are thus derived. In particular, the method of asymptotic homogenization is used where a finite number of fibres are randomly distributed within the representative periodic cell. The study focuses on the efficacy of such an approach in representing a macroscopically random (hence transversely isotropic) material. Of particular importance is the sensitivity of the method to cell shape, and how this choice affects the resulting (configurationally averaged) elastic moduli. The averaging method is shown to yield results that lie within the Hashin–Shtrikman variational bounds for fibre-reinforced media and compares well with the multiple scattering and (classical) self-consistent approximations with a deviation from the latter in the larger volume fraction cases. Results also compare favourably with well-known experimental data from the literature.  相似文献   

5.
Single-walled carbon nanotubes (SWNTs) in crystalline bundles may exhibit a transition in which the cross-sections of tubes turn from perfectly circular to hexagonal, depending upon the tube diameter and externally applied pressure, and this structural instability leads to an abrupt change in the bulk elastic properties of SWNT bundles. This paper presents a hybrid atom/continuum model to study the bulk elastic properties of SWNT bundles, and the predicted characteristics of this structural instability agree well with the experimental observations available in the literature. Linearized bulk elastic properties of SWNT bundles with respect to a stable configuration are transversely isotropic and hence can be characterized by five independent elastic moduli. A complete set of these five moduli is predicted for the first time. It is found that the deformability of tube cross-sections play a dominant role in characterizing the transverse moduli.  相似文献   

6.
Under investigation is a heterogeneous material consisting of an elastic homogeneous isotropic matrix in which layered elastic isotropic inclusions or pores are embedded. The generalized self-consistent model (GSCM) is extended so as to be capable of estimating the apparent elastic properties of a finite-size specimen smaller than a representative volume element (RVE). The kinematical or static apparent shear modulus is determined as a root of a cubic polynomial equation instead of a quadratic polynomial equation as in the classical GSCM of Christensen and Lo [Christensen, R.M., Lo, K.H., 1979. Solutions for effective shear properties in three phase sphere and cylinder models. J. Mech. Phys. Solids 27, 315–330]. It turns out that the extended GSCM establishes a link between the composite sphere assemblage model (CSAM) of Hashin [Hashin, Z., 1962. The elastic moduli of heterogeneous materials. J. Appl. Mech. 29, 143–150] and the classical GSCM. Demanding that the normalized distance between the kinematical and static apparent moduli of a finite-size specimen be smaller than a certain tolerance, the minimum RVE size is estimated in a closed form.  相似文献   

7.
We review the theoretical bounds on the effective properties of linear elastic inhomogeneous solids (including composite materials) in the presence of constituents having non-positive-definite elastic moduli (so-called negative-stiffness phases). Using arguments of Hill and Koiter, we show that for statically stable bodies the classical displacement-based variational principles for Dirichlet and Neumann boundary problems hold but that the dual variational principle for traction boundary problems does not apply. We illustrate our findings by the example of a coated spherical inclusion whose stability conditions are obtained from the variational principles. We further show that the classical Voigt upper bound on the linear elastic moduli in multi-phase inhomogeneous bodies and composites applies and that it imposes a stability condition: overall stability requires that the effective moduli do not surpass the Voigt upper bound. This particularly implies that, while the geometric constraints among constituents in a composite can stabilize negative-stiffness phases, the stabilization is insufficient to allow for extreme overall static elastic moduli (exceeding those of the constituents). Stronger bounds on the effective elastic moduli of isotropic composites can be obtained from the Hashin–Shtrikman variational inequalities, which are also shown to hold in the presence of negative stiffness.  相似文献   

8.
In this paper we present a unified treatment of composite ellipsoid assemblages in the setting of uncoupled phenomena like conductivity and elasticity and coupled phenomena like thermoelectricity and piezomagnetoelectricity. The building block of this microgeometry is a confocal ellipsoidal particle consisting of a (possibly void) core and a coating. All space is filled up with such units which have different sizes but possess the same aspect ratios. The confocal ellipsoids may have the same orientation in space or may be randomly oriented. The resulting microgeometry simulates two-phase composites in which the reinforcing components are short fibers or elongated particles. Our main interest is in obtaining information of an exact nature on the effective moduli of this microgeometry whose effective tensor symmetry structure depends on the packing mode of the coated ellipsoids. This information will sometimes be complete like the full effective thermoelectric tensor of an assemblage which contains aligned ellipsoids in which the coating is isotropic and the core is arbitrarily anisotropic. In the majority of the cases however the maximum achievable exact information will be only partial and will appear in the form of certain exact relations between the effective moduli of the microgeometry. These exact relations are obtained from exact solutions for the fields in the microstructure for a certain set of loading conditions. In all the considered cases an isotropic coating can be combined with a fully arbitrary core. This covers the most important physical case of anisotropic fibers in an isotropic matrix. Allowing anisotropy in the coating requires the fulfillment of certain constraint conditions between its moduli. Even though in this case the presence of such constraint conditions may render the anisotropic coating material hypothetical, the value of the derived solutions remains since they still provide benchmark comparisons for approximate and numerical treatments. The remarkable feature of the general analysis which covers all treated uncoupled and coupled phenomena is that it is developed solely on the basis of potential solutions of the conduction problem in the same microgeometry.  相似文献   

9.
I.IntroductionWhethertheinterfacesofcompositematerialsareperfectornotwillaffectitsmacromechanicaloreffectivepropertiesimportantly.Butsofar,almostallofthestudiesontheeffectivepropertiesofcompositematerialsarebasedontheassumptionthattheinterfacesareperfectl"2].Infact,thisisnotappropriateforallinterfaces[31.Thusthestudiesonmechanicalpropertyofcompositematerialswithimperfaceintert'acehavebeenconsideredrecentlyinsomeliteratures.Hashin16]hasextendedtheelasticextremumprinciplesofminimumpotentialandm…  相似文献   

10.
11.
含夹杂复合材料宏观性能研究   总被引:11,自引:1,他引:10  
吴林志  石志飞 《力学进展》1995,25(3):410-423
本文综述并评价了有关含夹杂复合材料的有效弹性模量研究的代表性工作,包括自洽理论,微分法,Eshelby-Mori-Tanaka法,Hashin和Shtrikman的变分法等。指出上述理论由于没有充分考虑复合材料内部的微结构特征,如夹杂的形状、几何尺寸、分布和夹杂间的相互影响,在夹杂的体积份数较大,如大于0.3时已不能有效地预报复合材料的有效弹性模量,随后介绍了近来才发展起来的一种新方法─—相关函数积分法,理论与实验的结果的比较表明,该方法在夹杂体积份数较大时仍然有效。  相似文献   

12.
The crack tip zone shielding effect for the ductile particle reinforced brittle materials is analyzed by using a micromechanics constitutive theory. The theory is developed here to determine the elastoplastic constitutive behavior of the composite. The elastoplastic particles, with isotropic or kinematical hardening, are uniformly dispersed in the brittle elastic matrix. The method proposed is based on the Mori-Tanaka's concept of average stress in the composite. The macroscopic yielding condition and the incremental stress strain relation of the composite during plastic deformation are explicity given in terms of the macroscopioc applied stress and the microstructural parameters of the composite such as the volume fraction and yield stress of ductile particles, elastic constants of the two phases, etc. Finally, the contribution of the plastic deformation in the particles near a crack tip to the toughening of the composite is evaluated. The project supported by National Natural Science Foundation of China  相似文献   

13.
In this study, a general framework is developed to analyze microscopic bifurcation and post-bifurcation behavior of elastoplastic, periodic cellular solids. The framework is built on the basis of a two-scale theory, called a homogenization theory, of the updated Lagrangian type. We thus derive the eigenmode problem of microscopic bifurcation and the orthogonality to be satisfied by the eigenmodes. The orthogonality allows the macroscopic increments to be independent of the eigenmodes, resulting in a simple procedure of the elastoplastic post-bifurcation analysis based on the notion of comparison solids. By use of this framework, then, bifurcation and post-bifurcation analysis are performed for cell aggregates of an elastoplastic honeycomb subject to in-plane compression. Thus, demonstrating a basic, long-wave eigenmode of microscopic bifurcation under uniaxial compression, it is shown that the eigenmode has the longitudinal component dominant to the transverse component and consequently causes microscopic buckling to localize in a cell row perpendicular to the loading axis. It is further shown that under equi-biaxial compression, the flower-like buckling mode having occurred in a macroscopically stable state changes into an asymmetric, long-wave mode due to the sextuple bifurcation in a macroscopically unstable state, leading to the localization of microscopic buckling in deltaic areas.  相似文献   

14.
In the present paper, we will illustrate the application of the method of conditional moments by constructing the algorithm for determination of the effective elastic properties of composites from the given elastic constants of the components and geometrical parameters of inclusions. A special case of two-component matrix composite with randomly distributed unidirectional spheroidal inclusions is considered. To this end it is assumed that the components of the composite show transversally isotropic symmetry of thermoelastic properties and that the axes of symmetry of the thermoelastic properties of the matrix and inclusions coincide with the coordinate axis x 3. As a numerical example a composite based on carbon inclusions and epoxide matrix is investigated. The dependencies of Young’s moduli, Poisson’s ratios and shear modulus from the concentration of inclusions and for certain values which characterize the shape of inclusions are analyzed. The results are compared and discussed in context with other theoretical predictions and experimental data.   相似文献   

15.
The present work aims to determine the effective elastic moduli of a composite having a columnar microstructure and made of two cylindrically anisotropic phases perfectly bonded at their interface oscillating quickly and periodically along the circular circumferential direction. To achieve this objective, a two-scale homogenization method is elaborated. First, the micro-to-meso upscaling is carried out by applying an asymptotic analysis, and the zone in which the interface oscillates is correspondingly homogenized as an equivalent interphase whose elastic properties are analytically and exactly determined. Second, the meso-to-macro upscaling is accomplished by using the composite cylinder assemblage model, and closed-form solutions are derived for the effective elastic moduli of the composite. Two important cases in which rough interfaces exhibit comb and saw-tooth profiles are studied in detail. The analytical results given by the two-scale homogenization procedure are shown to agree well with the numerical ones provided by the finite element method and to verify the universal relations existing between the effective elastic moduli of a two-phase columnar composite.  相似文献   

16.
Crystal plasticity finite element analysis of cyclic deformation of compatible type FCC bicrystals are performed. The model specimen used in the analysis is a virtual FCC bicrystal with an isotropic elastic property; therefore, the effect of constraint due to elastic incompatibility does not appear. The results of the analysis show the strain-amplitude-dependence of both the organization of the GND structure and the stress–strain behavior. The calculated stress–strain curve with the largest strain amplitude shows additional cyclic hardening. The microscopic mechanisms of the strain-amplitude-dependent organization of the GND structure and additional cyclic hardening behavior are discussed in terms of the activation of secondary slip system(s). Finally, the effects of the elastic anisotropy, the lattice friction stress and the interaction between dislocations are also argued.  相似文献   

17.
Deformation micromechanisms of a Ti–6Al–4V alloy under fatigue loading at room temperature are studied using a three-dimensional crystal plasticity constitutive model. The model employs a minimum set of fitting parameters based on experimental data for Ti–6Al–4V. Single slip is strongly favored through a softening law that affects mainly the driving force for slip on the first activated slip system. Cyclic deformation behavior at the macroscopic scale and at the local scale of grains is analyzed through the simulation of 20 cycles of fatigue on a polycrystalline structure of 900 randomly oriented grains. The progressive activation of slip (basal, prismatic, and pyramidal) is analyzed and compared to experimental observations.  相似文献   

18.
We study the macroscopic mechanical behavior of materials with microscopic holes or hard inclusions. Specifically, we deal with the effective elastic moduli of composites whose microgeometry consists of either soft or hard isolated inclusions surrounded by an elastic matrix. We approach this problem by taking the stiffness of the inclusion phase to be a complex variable, which we eventually evaluate at the soft or hard limits. Our main result states that there is a certain class of non-physical, negative-definite values of the elastic moduli of the inclusion phase for which the effective tensor does not have infinities or become otherwise singular.We present applications of this result to the estimation of effective moduli and to homogenization theorems. The first application involves using complexanalytic methods to obtain rigorous and accurate bounds on the effective moduli of the high-contrast composites under consideration. We also discuss the variational estimates of Rubenfeld & Keller, which yield a complementary set of bounds on these moduli. The best bounds are given by a combination of the analytical and variational results. As a second application, we show that certain known theorems of homogenization for materials with holes are simple consequences of our main result, and in this connection we establish corresponding new theorems for materials with hard inclusions. While our rederivation of the homogenization theorems for materials with holes can be closely related to other known constructions, it appears that certain elements provided by our main result are essential in the proof of homogenization for the hard-inclusion case.  相似文献   

19.
Elastic buckling of layered/fibre reinforced composites is investigated. Assuming the existence of both shear and transverse modes of failure, the fibre is analysed as a layer embedded in a matrix. Interacting stresses, acting at the interfaces are determined from an exact derived stress field in the matrix. It is shown that buckling can occur only in the shear buckling mode and that the transverse buckling mode is spurious. As opposed to the well known Rosen shear buckling mode solution (predicated on an infinite buckling wavelength), shear buckling is shown to exist under two régimes: buckling of dilute composites with finite wavelengths and buckling of non-dilute composites with infinite wavelengths. Based on the analysis, a model is constructed which defines the fibre concentration at which the transition between the two régimes occurs. The buckling strains are shown to be (approximately) constant for dilute composites and, in the case of very stiff fibres, to have realistic values compatible with elastic behaviour. For the case of non-dilute composites, the strains are found to be in agreement with those given by the Rosen shear buckling solution. Numerical results for the buckling strains and stresses are presented and compared with the Rosen solution. These reveal that the Rosen solution is valid only for the case of non-dilute composites. The investigation demonstrates that elastic buckling may be a dominant failure mechanism of composites consisting of very stiff fibres fabricated in the framework of nano-technology.  相似文献   

20.
The aim of this work is to construct yield surfaces to describe initial yielding and characterize hardening behavior of a highly anisotropic material. A methodology for constructing yield surfaces for isotropic materials using axial–torsion loading is extended to highly anisotropic materials. The technique uses a sensitive definition of yielding based on permanent strain rather than offset strain, and enables multiple yield points and multiple yield surfaces to be conducted on a single specimen. A target value of 20 × 10−6 is used for Al2O3 fiber reinforced aluminum laminates having a fiber volume fraction of 0.55. Sixteen radial probes are used to define the yield locus in the axial–shear stress plane. Initial yield surfaces for [04], [904], and [0/90]2 fibrous aluminum laminates are well described by ellipses in the axial–shear stress plane having aspect ratios of 10, 2.5, and 3.3, respectively. For reference, the aspect ratio of the Mises ellipse for an isotropic material is 1.73. Initial yield surfaces do not have a tension–compression asymmetry. Four overload profiles (plus, ex, hourglass, and zee) are applied to characterize hardening of a [0/90]2 laminate by constructing 30 subsequent yield surfaces. Parameters to describe the center and axes of an ellipse are regressed to the yield points. The results clearly indicate that kinematic hardening dominates so that material state evolution can be described by tracking the center of the yield locus. For a nonproportional overload of (στ) = (500, 70) MPa, the center of the yield locus translated to (στ) = (430, 37) MPa and the ellipse major axis was only 110 MPa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号