首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The method of influence function is applied to the solution of the boundary-value problem on the free transverse vibrations of a vertical cantilever and a bar subjected to axial loads. To demonstrate the capabilities of the method, a cantilever with the free end under two types of loading — point forces (conservative and follower) and a load distributed along the length (dead load) — is analyzed. A characteristic equation in the general form, which does not depend on the cantilever shape and on the type of axial load, is given. The Cauchy influence function depends on the cantilever shape and the type of axial load. As an example, a tapered cantilever subjected to conservative and follower forces and an elastically supported bar under the dead load are considered in detail. The characteristic equation derived allows one to evaluate the natural frequencies and the Euler critical loads. It is shown that the calculated natural frequencies and critical forces are in a good agreement with the exact values when several terms are retained in the characteristic series. The high accuracy of the method is also confirmed  相似文献   

2.
We consider the optimal design problem for cantilever beams of variable rigidity loaded at the free end by an arbitrary transverse force. The value of the cantilever free end vertical displacement serves as the optimality criterion, and the distribution of the cantilever thicknesses (cross-sections) is usually used as the design variable. We present results of an asymptotic analysis and a numerical solution of the optimization problem and discuss specific features of the formation of optimal solutions under nonlinear bending.  相似文献   

3.
Carbon nanotubes are finding significant application to nanofluidic devices. This work studies the influence of internal moving fluid on free vibration and flow-induced flutter instability of cantilever carbon nanotubes based on a continuum elastic model. Since the flow-induced vibration of cantilever pipes is non-conservative in nature, cantilever carbon nanotubes conveying fluid are damped with decaying amplitude for flow velocity below a certain critical value. Beyond this critical flow velocity, flutter instability occurs and vibration becomes amplified with growing amplitude. Our results indicate that internal moving fluid substantially affects vibrational frequencies and the decaying rate of amplitude especially for longer cantilever carbon nanotubes of larger innermost radius at higher flow velocity, and the critical flow velocity for flutter instability in some cases may fall within the practical range. On the other hand, a moderately stiff surrounding elastic medium (such as polymers) can significantly suppress the effect of internal moving fluid on vibrational frequencies and suppress or eliminate flutter instability within the practical range of flow velocity.  相似文献   

4.
In this paper, the method of the influence functions and the method of partial discretization are proposed to solve the boundary-value problem of free transverse vibrations of a nonhomogenous cantilever with a concentrated mass attached to the free end. In order to demonstrate the possibilities of the methods, the case of a cantilever in the form of a sharp cone, a frustum of a cone, and a linear wedge made of two different materials is treated in detail. The general characteristic equations which allow one to take into consideration the nonhomogeneous material properties and the cross-sectional geometry of cantilever are introduced. The expressions for the first three terms of the characteristic series are obtained in closed form using the method of Cauchy influence functions. The results of calculations of the first two frequencies of free transverse vibrations are presented for selected material combinations and various cantilever geometries. There is very good agreement between the numerical results obtained using the method of partial discretization and the analytical results obtained using the method of influence functions. The high accuracy of the proposed methods and agreement with known theoretical data and with the experimental results obtained by the authors in the homogeneous cantilever case are shown. Presented at the International Conference on the Theory of Machines and Mechanisms, Poland, 1996. Published in Prikladnaya Mekhanika, Vol. 35, No. 6, pp. 103–110, June, 1999.  相似文献   

5.
The influence of electromagnetic actuators (EMAs) on the frequency response of a harmonically excited cantilever beam is investigated analytically, numerically and experimentally in this paper. Specifically, the intensity of the current generating the EMAs force is varied and its effect on the dynamic behavior of the system is analyzed. Analytical treatment based on perturbation analysis is performed on a simplified equation modeling the one mode vibration of the cantilever beam. Results indicated that EMAs produce a softening behavior in the system. Further, it is shown that as the current intensity of EMAs increases, the resonance curve shifts toward smaller values of frequency and the non-linear characteristic of the system becomes softer. The analytical predictions have been verified numerically and confirmed experimentally using a test rig.  相似文献   

6.
康慨  徐鉴 《力学季刊》2015,36(2):189
研究具有支撑参数激励摆系统的支撑结构振动对摆旋转的影响,其中支撑结构是受到扭簧约束的刚性悬臂梁,参数激励摆与刚性悬臂梁的悬臂段铰接.首先,通过拉格朗日方程建立了系统两自由度的动力学方程.其次,利用多尺度法对建立的模型进行理论分析,得到悬臂梁的振动与上摆不同运动形式的关系,从而得到上摆不同运动形式下的参数平面分类和悬臂梁在上摆转动时的振动频响.最后,通过建立实验装置,观察理论预测,实验结果验证了理论分析的正确性.实验与理论对照得到,当参数激励频率接近悬臂梁的一阶固有频率时,悬臂梁的振幅变大,会破坏摆的转动稳定性.  相似文献   

7.
Ashhab  M.  Salapaka  M. V.  Dahleh  M.  Mezić  I. 《Nonlinear dynamics》1999,20(3):197-220
We study the dynamical behavior of a microcantilever-sample system that forms the basis for the operation of atomic force microscopes (AFM). We model the microcantilever by a single mode approximation. The interaction between the sample and the cantilever is modeled by a Lennard--Jones potential which consists of a short-range repulsive potential and a long-range van der Waals (vdW) attractive potential. We analyze the dynamics of the cantilever sample system when the cantilever is subjected to a sinusoidal forcing. Using the Melnikov method, the region in the space of physical parameters where chaotic motion is present is determined. In addition, using a proportional and derivative controller, we compute the Melnikov function in terms of the parameters of the controller. Using this relation, controllers can be designed to selectively change the regime of dynamical interaction.  相似文献   

8.
剪切失效是强动载荷作用下结构失效的重要模式。本文给出了计及梁的转动惯量时端头带有质量块的悬臂梁结构受到冲击载荷作用后发生剪切失效的无量纲判据。分析表明,在初始速度间断面上是否发生剪切失效取决于质量块初始动能和质量块尺寸与梁厚之比,而与梁的长度无关。梁的转动惯量对于剪切失效具有不可忽略的影响。  相似文献   

9.
We succeed in constructing exact parametric analytic solutions for the non-linear ordinary differential equations governing the elastica response of a cantilever due to a generalized end loading by taking into account the effects of transverse deformation. Application to the case of the eccentric buckling of a cantilever by taking into account the above influences is developed.  相似文献   

10.
TiNi相变悬臂梁的横向冲击特性实验研究   总被引:10,自引:0,他引:10  
利用改装的霍普金森压杆装置对TiNi形状记忆合金圆截面悬臂梁进行了横向冲击实验研究,并与45#钢悬臂梁的实验结果进行了对比,目的是探索相变对结构动态响应的影响。结果表明:在同样冲击条件下,TiNi悬臂梁的吸能效率优于钢悬臂梁;发现冲击过程中,TiNi试件根部内侧可能形成局部相变铰,使阻力曲线的斜率发生变化;卸载后相变铰消失,TiNi悬臂梁试件基本回复原状,钢试件则留下显著的残余变形。TiNi悬臂梁的冲击特性受热弹性马氏体相变和逆相变的支配,不同于传统的弹塑性机制。  相似文献   

11.
We consider the problem of Nicolai on dynamic stability of an elastic cantilever rod loaded by an axial compressive force and tangential twisting torque in continuous formulation. The rod is assumed to be non-uniform, i.e. having variable cross-section with non-equal principal moments of inertia. New linear equations and boundary conditions are derived from nonlinear governing equations. These equations form the basis for analytical and numerical studies. The important new details of this formulation include the pre-twisting effect due to the torque and compressibility of the rod. General formulae for the influence of small geometrical imperfections to the stability region are derived and numerical examples are presented.  相似文献   

12.
基于欧拉-伯努利梁理论得到悬臂梁自由振动的振型函数。通过数值计算得出实验用的悬臂梁前五阶振型的节点位置及其与梁长的比值。考虑传感器对悬臂梁固有频率的影响,建立梁-传感器模型进行仿真分析并得出悬臂梁前五阶固有频率。基于节点位置和测点位置,在实验中选择激励点。将具体实验的结果与梁-传感器仿真模型结果进行对比,通过前五阶固有频率的误差分析,发现仿真分析结果与实验结果误差最高为 1.3%。研究完整地叙述了悬臂梁的模态测试流程,可为工程技术人员的模态测试起一定的指导作用。  相似文献   

13.
微悬臂梁结构广泛应用于微纳电子机械系统. 在实际应用中,涂层和工作环境的变化对微悬臂梁结构动态工作模式有着不容忽视的影响. 运用流体中双层微悬臂梁的光热振动模型,研究了在激光光热驱动下,金涂层微悬臂梁在不同流体中的振动特性. 理论上得到了微悬臂梁的温度场,光热驱动力和振动变形场的解析表达式. 研究结果表明,流体环境对微悬臂梁的光热振动谱有显著的影响,主要表现在共振频率的偏移和品质因子的变化两个方面. 相比较于悬臂梁在真空中的响应,当悬臂梁在空气中振动时,共振频率向低频产生微小的漂移(0.7%),共振峰未发生明显变化;然而,当悬臂梁在液体中振动的时候,共振频率向低频产生巨大的漂移(58%~80%),而且品质因子发生量级上的减小,共振峰发生了畸变. 本研究对微纳探测以及原子力显微镜等仪器的设计优化,有着一定的理论指导意义.  相似文献   

14.
董天宝  宋亚勤 《力学学报》2014,46(5):703-709
微悬臂梁结构广泛应用于微纳电子机械系统. 在实际应用中,涂层和工作环境的变化对微悬臂梁结构动态工作模式有着不容忽视的影响. 运用流体中双层微悬臂梁的光热振动模型,研究了在激光光热驱动下,金涂层微悬臂梁在不同流体中的振动特性. 理论上得到了微悬臂梁的温度场,光热驱动力和振动变形场的解析表达式. 研究结果表明,流体环境对微悬臂梁的光热振动谱有显著的影响,主要表现在共振频率的偏移和品质因子的变化两个方面. 相比较于悬臂梁在真空中的响应,当悬臂梁在空气中振动时,共振频率向低频产生微小的漂移(0.7%),共振峰未发生明显变化;然而,当悬臂梁在液体中振动的时候,共振频率向低频产生巨大的漂移(58%~80%),而且品质因子发生量级上的减小,共振峰发生了畸变. 本研究对微纳探测以及原子力显微镜等仪器的设计优化,有着一定的理论指导意义.   相似文献   

15.
The present article researches the problems of the lateral instability of cantilever rectangular plates under a concentrated force or a uniformly distributed load respectively.We select the polynomial(2.1)instead of the cosecant function in Ref.[1]as the flexural functions.The minimum critical load obtained here is more exact than the results obtained in Ref.[1]  相似文献   

16.
Stone cantilever staircases are present in case of both new constructions and reconstructions. The aim of the present paper is to understand the mechanical behaviour of these staircases with the help of discrete element simulations, and to compare the calculated behaviour to the estimations given by the existing manual calculation methods. First a literature review is presented on the statical calculation of cantilevered staircases: manual calculation methods suggested in the 1990s for straight and spiral staircases are introduced, focusing on Heyman’s theory and its improved counterparts. Then the discrete element method is used as a tool to perform virtual experiments, in order to evaluate the mechanical behaviour of the straight and spiral staircases for selfweight, live loads and support movement. The results obtained (internal forces, stresses, deflections) are then compared with the manual calculation results. The most important conclusions are: (1) the term “cantilever stair” is misleading: significant torsion moments occur in the treads, while the bending moments are much smaller than in a free cantilever; (2) the type of the connection between wall and treads (i.e. the end of the tread is simply supported by the wall against translation and torsion, or it is also partly clamped) has a fundamental influence on the internal forces and stress distributions; (3) for simply supported treads the existing manual methods are conservative for straight stairs, but for spiral stairs they dangerously underestimate the torsional moments.  相似文献   

17.
论文建立了一种附磁阶梯变厚度压电悬臂梁的动力学模型并分析了系统的俘能特性。基于Euler-Bernoulli梁理论分段建立系统能量函数并引入非线性磁势能,利用Lagrange方程建立了系统机电耦合动力学方程;利用数值方法分析了磁间距对系统振动特性的影响,此外还研究了系统单稳态和双稳态响应,探讨了厚度比、长度比、磁间距和外激励幅值对系统动力学响应和俘能特性的影响。结果表明,磁间距是影响系统势能的主要因素,调节磁间距可使系统产生单稳态和双稳态响应,从而有效提高俘能器俘能特性;与传统等截面悬臂梁压电俘能器相比,通过优化结构参数,附磁阶梯变厚度悬臂梁压电俘能器能够发生明显的非线性振动现象,实现宽频带振动能量采集。  相似文献   

18.
Bending analysis of micro-sized beams based on the Bernoulli-Euler beam theory is presented within the modified strain gradient elasticity and modified couple stress theories. The governing equations and the related boundary conditions are derived from the variational principles. These equations are solved analytically for deflection, bending, and rotation responses of micro-sized beams. Propped cantilever, both ends clamped, both ends simply supported, and cantilever cases are taken into consideration as boundary conditions. The influence of size effect and additional material parameters on the static response of micro-sized beams in bending is examined. The effect of Poisson’s ratio is also investigated in detail. It is concluded from the results that the bending values obtained by these higher-order elasticity theories have a significant difference with those calculated by the classical elasticity theory.  相似文献   

19.
The delamination energy and fracture behaviour under static and dynamic mode I loading of two composites, made of the same unidirectional carbon reinforcement embedded in two different matrices, one tough and the other brittle, was investigated with the aim of analyzing the influence of the employed resin on the fatigue delamination behaviour of both composites. In the case of dynamic loading, the number of cycles necessary for the onset of delamination was determined for a given elastic energy release rate and crack growth rate for different critical energy rates. The double cantilever beam (DCB) test was found to be suitable for promoting the initial delamination. The experimental results confirm the enhanced performance of the tough resin both in terms of crack initiation and growth rate.  相似文献   

20.
In this paper, carbon nanotube-based nanoelectromechanical systems (NEMS) are nanofabricated and tested. In-situ scanning electron microscopy measurements of the deflection of the cantilever under electrostatic actuation are reported. In particular, a cantilever nanotube suspended over an electrode (nanoswitch), or two symmetric cantilever nanotubes (nanotweezers), from which a differential in electrical potential is imposed, are studied. The finite deformation regime investigated here is the first of its kind. An analytical model based on the energy method in both small deformation and finite kinematics (large deformation) regimes is used to interpret the measurements. The theory overcomes limitations of prior analysis reported in the literature towards the prediction of the structural behavior of NEMS. Some of the simplifying hypotheses have been removed. Furthermore, the theory takes into account the cylindrical shape of the deflected nanotube in the evaluation of its electrical capacitance, the influence of the van der Waals forces as well as finite kinematics. In addition, tip charge concentration and a quantum correction of the electrical capacitance are also considered. The energy-based method is used to predict the structural behavior and instability of the nanotube, corresponding to the on/off states of the nanoswitch, or to the open/close states of the nanotweezers—at the so-called pull-in voltage. Accuracy of the derived formulas is assessed by comparison of the theoretical prediction and experimental data in both small deformation and finite kinematics regimes. The results reported in this work are particularly useful in the characterization of the electromechanical properties of nanotubes as well as in the optimal design of nanotube-based NEMS devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号