首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 221 毫秒
1.
This paper establishes spatial estimates in a prismatic (semi-infinite) cylinder occupied by an anisotropic homogeneous linear elastic material, whose elasticity tensor is strongly elliptic. The cylinder is maintained in equilibrium under zero body force, zero displacement on the lateral boundary and pointwise specified displacement over the base. The other plane end is subject to zero displacement (when the cylinder is finite, say). The limiting case of a semi-infinite cylinder is also considered and zero displacement on the remote end (at large distance) is not assumed in this case. A first approach is developed by considering two mean-square cross-sectional measures of the displacement vector whose spatial evolution with respect to the axial variable is studied by means of a technique based on a second-order differential inequality. Conditions on the elastic constants are derived that show the cross-sectional measures exhibit alternative behaviour and in particular for the semi-infinite cylinder that there is either at least exponential growth or at most exponential decay. A second approach considers cross-sectional integrals involving the displacement and its gradient and furnishes information upon the spatial evolution, without restricting the range of strongly elliptic elastic constants. Such models are principally based upon a first-order differential inequality as well as on one of second order. The general results are explicitly presented for transversely isotropic materials and graphically illustrated for a cortical bone.  相似文献   

2.
Padovani  Cristina 《Meccanica》2002,37(6):515-525
The strong ellipticity of the elasticity tensor of a linearly hyperelastic, transversely isotropic material is investigated. The necessary and sufficient conditions for the elasticity tensor to be strongly elliptic are determined for the five constants characterizing it.  相似文献   

3.
We consider linear divergence-form scalar elliptic equations and vectorial equations for elasticity with rough (L (Ω), W ì \mathbb Rd{\Omega \subset \mathbb R^d}) coefficients a(x) that, in particular, model media with non-separated scales and high contrast in material properties. While the homogenization of PDEs with periodic or ergodic coefficients and well separated scales is now well understood, we consider here the most general case of arbitrary bounded coefficients. For such problems, we introduce explicit and optimal finite dimensional approximations of solutions that can be viewed as a theoretical Galerkin method with controlled error estimates, analogous to classical homogenization approximations. In particular, this approach allows one to analyze a given medium directly without introducing the mathematical concept of an e{\epsilon} family of media as in classical homogenization. We define the flux norm as the L 2 norm of the potential part of the fluxes of solutions, which is equivalent to the usual H 1-norm. We show that in the flux norm, the error associated with approximating, in a properly defined finite-dimensional space, the set of solutions of the aforementioned PDEs with rough coefficients is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard space (for example, piecewise polynomial). We refer to this property as the transfer property. A simple application of this property is the construction of finite dimensional approximation spaces with errors independent of the regularity and contrast of the coefficients and with optimal and explicit convergence rates. This transfer property also provides an alternative to the global harmonic change of coordinates for the homogenization of elliptic operators that can be extended to elasticity equations. The proofs of these homogenization results are based on a new class of elliptic inequalities. These inequalities play the same role in our approach as the div-curl lemma in classical homogenization.  相似文献   

4.
Recently Fu and Mielke uncovered a new identity that the surface impedance tensor of any anisotropic elastic material has to satisfy. By solving algebraically a matrix equation that follows from the new identity, we derive an explicit expression for the surface impedance tensor, which is correct up to terms linear in the components of the anisotropic part of the elasticity tensor of the material in question. From the well-known relationship between the surface impedance tensor and the Green’s function for infinite space, we obtain an explicit expression for the Green’s function, which is correct up to terms linear in the components of the anisotropic part of the elasticity tensor.   相似文献   

5.
The purpose of this research is to further investigate the effects of material inhomogeneity and the combined effects of material inhomogeneity and anisotropy on the decay of Saint-Venant end effects. Saint-Venant decay rates for self-equilibrated edge loads in symmetric sandwich structures are examined in the context of anti-plane shear for linear anisotropic elasticity. The problem is governed by a second-order, linear, elliptic, partial differential equation with discontinuous coefficients. The most general anisotropy consistent with a state of anti-plane shear is considered, as well as a variety of boundary conditions. Anti-plane or longitudinal shear deformations are one of the simplest classes of deformations in solid mechanics. The resulting deformations are completely characterized by a single out-of-plane displacement which depends only on the in-plane coordinates. They can be thought of as complementary deformations to those of plane elasticity. While these deformations have received little attention compared with the plane problems of linear elasticity, they have recently been investigated for anisotropic and inhomogeneous linear elasticity. In the context of linear elasticity, Saint-Venant's principle is used to show that self-equilibrated loads generate local stress effects that quickly decay away from the loaded end of a structure. For homogeneous isotropic linear elastic materials this is well-documented. Self-equilibrated loads are a class of load distributions that are statically equivalent to zero, i.e., have zero resultant force and moment. When Saint-Venant's principle is valid, pointwise boundary conditions can be replaced by more tractable resultant conditions. It is shown in the present study that material inhomogeneity significantly affects the practical application of Saint-Venant's principle to sandwich structures.  相似文献   

6.
7.
A class of universal relations for isotropic elastic materials is described by the tensor equationTB = BT. This simple rule yields at most three component relations which are the generators of many known universal relations for isotropic elasticity theory, including the well-known universal rule for a simple shear. Universal relations for four families of nonhomogeneous deformations known to be controllable in every incompressible, homogeneous and isotropic elastic material are exhibited. These same universal relations may hold for special compressible materials. New universal relations for a homogeneous controllable shear, a nonhomogeneous shear, and a variable extension are derived. The general universal relation for an arbitrary isotropic tensor function of a symmetric tensor also is noted.  相似文献   

8.
A procedure has been developed in previous papers for constructing exact solutions of the equations of linear elasticity in a thick plate of inhomogeneous isotropic linearly elastic material in which the elastic moduli depend in any specified manner on a coordinate normal to the plane of the plate. The essential idea is that any solution of the classical thin plate or classical laminate theory equations (which are two-dimensional theories) generates, by straightforward substitutions, a solution of the three-dimensional elasticity equations for the homogeneous material. Recently this theory has been formulated in terms of functions of a complex variable. It was shown that the displacement and stress fields in the inhomogeneous material could be expressed in terms of four complex potentials that are analytic functions of the complex variable ζ = x + iy in the mid-plane of the plate. However, the analysis performed so far applies only to the case of a plate with traction-free upper and lower faces. The present paper extends these solutions to the case where the plate is bent by a pressure distribution applied to a face.  相似文献   

9.
According to the classical hypoelasticity theory, the hypoelasticity tensor, i.e. the fourth order Eulerian constitutive tensor, characterizing the linear relationship between the stretching and an objective stress rate, is dependent on the current stress and must be isotropic. Although the classical hypoelasticity in this sense includes as a particular case the isotropic elasticity, it fails to incorporate any given type of anisotropic elasticity. This implies that one can formulate the isotropic elasticity as an integrable-exactly classical hypoelastic relation, whereas one can in no way do the same for any given type of anisotropic elasticity. A generalization of classical theory is available, which assumes that the material time derivative of the rotated stress is dependent on the rotated Cauchy stress, the rotated stretching and a Lagrangean spin, linear and of the first degree in the latter two. As compared with the original idea of classical hypoelasticity, perhaps the just-mentioned generalization might be somewhat drastic. In this article, we show that, merely replacing the isotropy property of the aforementioned stress-dependent hypoelasticity tensor with the invariance property of the latter under an R-rotating material symmetry group R⋆ G 0, one may establish a natural generalization of classical theory, which includes all of elasticity. Here R is the rotation tensor in the polar decomposition of the deformation gradient and G 0 any given initial material symmetry group. In particular, the classical case is recovered whenever the material symmetry is assumed to be isotropic. With the new generalization it is demonstrated that any two non-integrable hypoelastic relations based on any two objective stress rates predict quite different path-dependent responses in nature and hence can in no sense be equivalent. Thus, the non-integrable hypoelastic relations based on any given objective stress rate constitute an independent constitutive class in its own right which is disjoint with and hence distinguishes itself from any class based on another objective stress rate. Only for elasticity, equivalent hypoelastic formulations based on different stress rates may be established. Moreover, universal integrability conditions are derived for all kinds of objective corotational stress rates and for all types of material symmetry. Explicit, simple, integrable-exactly hypoelastic relations based on the newly discovered logarithmic stress rate are presented to characterize hyperelasticity with any given type of material symmetry. It is shown that, to achieve the latter goal, the logarithmic stress rate is the only choice among all infinitely many objective corotational stress rates. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
We consider the inverse problem of identifying the density and elastic moduli for three-dimensional anisotropic elastic bodies, given displacement and traction measurements made at their surface. These surface measurements are modelled by the dynamic Dirichlet-to-Neumann map on a finite time interval. For linear or nonlinear anisotropic hyperelastic bodies we show that the displacement-to-traction surface measurements do not change when the density and elasticity tensor in the interior are transformed tensorially by a change of coordinates fixing the surface of the body to first order. Our main tool, a new approach in inverse problems for elastic media, is the representation of the equations of motion in a covariant form (following Marsden and Hughes, 1983) that preserves the underlying physics.In the case of classical linear elastodynamics we then investigate how the type of anisotropy changes under coordinate transformations. That is, we analyze the orbits of general linear, anisotropic elasticity tensors under the action by pull-back of diffeomorphisms that fix the surface of the elastic body to first order, and derive a pointwise characterization of parts of the orbits under this action. For example, we show that the orbit of isotropic elastic media, at any point in the body, consists of some transversely isotropic and some orthotropic elastic media. We then derive the first uniqueness result in the inverse problem for anisotropic media using surface displacement-traction data: uniqueness of three elastic moduli for tensors in the orbit of isotropic elasticity tensors. Partially supported by an MSRI Postdoctoral Fellowship. Research at MSRI is supported in part by NSF grant DMS-9850361. This work was conducted while the first author was a Gibbs Instructor at Yale University. Partially supported by an MSRI Postdoctoral Fellowship, and by NSF grant DMS-9801664 (9996350).  相似文献   

11.
A method of averaging the data on the anisotropic elastic constants of a material is presented. The anisotropic elastic constants are represented by the elasticity tensor which is expressed as a second rank tensor in a space of six dimensions. The method consists of averaging eigenbases of different measurements of the elasticity tensor, then averaging the eigenvalues referred to the average eigenbasis. The eigenvalues and eigenvectors are obtained by using a representation of the stress-strain relations due, in principle, to Kelvin [17, 18]. The formulas for the representation of the averaged elasticity tensor are simple and concise. The applications of these formulas are illustrated using previously reported data, and are contrasted with the traditional analysis of the same data by Hearmon [9]. An interesting result that emerges from this analysis is a method dealing with variable composition anisotropic elastic materials whose elastic constants depend upon the particular composition. In the case of porous isotropic materials, for example, it is customary to regress the Young's modulus against porosity. The results of this paper suggest a structure or paradigm for extending to anisotropic materials this empirical method of regressing elastic constant data against composition or porosity.  相似文献   

12.
A series solution to obtain the effective properties of some elastic composites media having periodically located heterogeneities is described. The method uses the classical expansion along Neuman series of the solution of the periodic elasticity problem in Fourier space, based on the Green's tensor, and exact expressions of factors depending on the shape of the inclusions. Some properties of convergence of the solution are presented, more specifically concerning the elasticity tensor of the reference medium, showing that the convergence occurs even for empty fibers. The solution is extended for rigid inclusions. A comparison is made with previous exact solutions for a fiber composite made of cylindrical fibers with circular cross-sections and with previous estimates. Different examples are presented for new situations concerning the study of fiber composites: composites with elliptic cross-sections and multi-phase fibrous composites.  相似文献   

13.
The elliptic blending approach is used in order to modify an Explicit Algebraic Reynolds Stress Model so as to reproduce the correct near wall behaviour of the turbulent stresses. The anisotropy stress tensor is expressed as a linear combination of tensor bases whose coefficients are sensitised to the non-local wall-blocking effect through the elliptic blending parameter γ. This parameter is obtained from a separate elliptic equation. The model does not use the distance from the wall thus it can be easily applied to complex geometries. It is validated against detailed DNS data for mean and turbulence quantities for the case of flow and heat transfer between parallel flat plates at three Reynolds numbers as well as against experimental data for the flow in a backward facing step at Re H = 28,000. The comparison with DNS results or experiments is quite satisfactory and shows the validity of the approach.  相似文献   

14.
The rigorous classical bounds of elastic composite materials theory provide limits on the achievable composite stiffnesses in terms of the properties and arrangements of the composite's constituents. These bounds result from the assumption, presumably made for stability reasons, that each constituent material must have positive-definite elastic moduli. If this assumption is relaxed, recently published elasticity analyses and experimental measurements show these bounds can be greatly exceeded, resulting in new materials of enormous potential.The key question is whether a composite material having a non-positive-definite constituent can be stable overall in the practically useful situation of applied traction boundary conditions. Drugan [2007. Elastic composite materials having a negative-stiffness phase can be stable. Phys. Rev. Lett. 98 (5), article no. 055502] first proved the answer is yes, by applying the energy criterion of elastic stability to the basic two- and three-dimensional composites consisting of a cylinder or sphere having non-positive-definite (but strongly elliptic) moduli with a thin positive-definite coating and proving overall stability provided the coating is sufficiently stiff.Here, we perform a complete and direct dynamic stability analysis of the plane strain fundamental elastic composite consisting of a circular cylinder of non-positive-definite material firmly bonded to a positive-definite concentric coating, for the full range of coating thicknesses (i.e., volume fractions). We determine quantitatively the full permissible range of inclusion and coating moduli, as a function of coating thickness, for which the overall composite is stable under dead traction boundary conditions. Among the results, we show that in the thin-coating case, the present dynamic stability analysis leads to precisely the same analytical stability requirements as those derived via the energy criterion by Drugan [2007. Elastic composite materials having a negative-stiffness phase can be stable. Phys. Rev. Lett. 98 (5), article no. 055502], and we derive new analytical stability requirements that are valid for a wider range of coating thickness. At the other extreme, we show that in the case of very thick coatings (corresponding to the dilute case of a matrix-inclusion composite), even an inclusion with merely strongly elliptic moduli can be stabilized by a positive-definite matrix satisfying weak requirements, for which we derive analytical expressions. Overall, our results show that surprisingly weak restrictions on the moduli and thickness of the positive-definite coating are sufficient to stabilize a non-positive-definite inclusion, even one whose moduli are merely strongly elliptic. These results legitimize expanding the search for novel materials with extreme properties to those incorporating a non-positive-definite constituent, and they provide quantitative restrictions on the constituent materials’ moduli and volume fractions, for the geometry examined here, that ensure overall stability of such composite materials.  相似文献   

15.
Here homogenization theory is used to establish a connection between the symmetries of a periodic elastic structure associated with the microscopic properties of an elastic material and the material symmetries of the effective, macroscopic elasticity tensor. Previous results of this type exist but here more general symmetries on the microscale are considered. Using an explicit example, we show that it is possible for a material to be fully anisotropic on the microscale and yet the symmetry group on the macroscale can contain elements other than plus or minus the identity. Another example demonstrates that not all material symmetries of the macroscopic elastic tensor are generated by symmetries of the periodic elastic structure.  相似文献   

16.
The effective elastic properties of a polycrystalline material depend on the single crystal elastic constants of the crystallites comprising the polycrystal and on the manner in which the crystallites are arranged. In this paper we apply the techniques of homogenization to put the problem of determining effective elastic constants in a precise mathematical framework that permits us to derive an expression for the effective elasticity tensor. We also study how the homogenized elasticity tensor changes as the probability characterizing the ensemble changes. Under the assumption that the field of orientations of the crystallographic axes of the crystallites is an independent random field, we show that our theory is compatible with the formulation used in texture analysis. In particular, we are able to prove that the physical assumption made by [10] in his study of weakly-textured polycrystals holds true. In addition, we establish some elementary bounds on the material constants that characterize the effective elasticity tensor of weakly-textured orthorhombic aggregates of cubic crystallites. Accepted: (June 15, 1999)  相似文献   

17.
We deal with the contact problem of homogeneous and isotropic linear elastostatics in the exterior of a bounded convex domain of ${\Bbb{R}}^{3}$ . We prove existence and uniqueness of a solution, provided the elasticity tensor is only strongly elliptic.  相似文献   

18.
Isotropic invariants of the elasticity tensor always yield the same values no matter what coordinate system is concerned and therefore they characterize the linear elasticity of a solid material intrinsically. There exists a finite set of invariants of the elasticity tensor such that each invariant of the elasticity tensor can be expressed as a single-valued function of this set. Such a set, called a basis of invariants of the elasticity tensor, can be used to realize a parametrization of the manifold of orbits of elastic moduli, i.e. to distinguish different kinds of linear elastic materials. Seeking such a basis is an old problem in theory of invariants and seems to have been unsuccessful until now. In this paper, by means of the unique spectral decomposition of the elasticity tensor every invariant of the elasticity tensor is shown to be a joint invariant of the eigenprojections of the elasticity tensor, and then by utilizing some properties of the eigenprojections a basis for each case concerning the multiplicity of the eigenvalues of the elasticity tensor is presented in terms of joint invariants of the eigenprojections. In addition to the foregoing properties, the presented invariants may also be used to form invariant criteria for identification of elastic symmetry axes.  相似文献   

19.
SymbolsU--FunchonofstrainenergyQ--OrthonormaltensorE--StraintensorEar--ComponentsofthestraintensorE,i,j=l,2,3n--VectorofthesymmetricaamsofthetransverseisotropicmaterialU*,E.,n*--FormsofU,EandninanothercoordinatesystemJf--MaininvariantsofstraintensorE,i=l,2,3Jf'n--InvariantsofstraintensorEconnectingwithvectorn,i=4,5Ji--TheabbreviatedformsofJf,Jf,Jf,Jf,",Jf,",i=l,2,3,4,5fi--ConstantsindependentonE,n,i=l,2,3,4,5el,e"--Thecovariantandcontravariantofthonormalbasisoftheusedcoordinatesyste…  相似文献   

20.
The finite volume discretization of nonlinear elasticity equations seems to be a promising alternative to the traditional finite element discretization as mentioned by Lee et al. [Computers and Structures (2013)]. In this work, we propose to solve the elastic response of a solid material by using a cell‐centered finite volume Lagrangian scheme in the current configuration. The hyperelastic approach is chosen for representing elastic isotropic materials. In this way, the constitutive law is based on the principle of frame indifference and thermodynamic consistency, which are imposed by mean of the Coleman–Noll procedure. It results in defining the Cauchy stress tensor as the derivative of the free energy with respect to the left Cauchy–Green tensor. Moreover, the materials being isotropic, the free‐energy is function of the left Cauchy–Green tensor invariants, which enable the use of the neo‐Hookean model. The hyperelasticity system is discretized using the cell‐centered Lagrangian scheme from the work of Maire et al. [J. Comput. Phys. (2009)]. The 3D scheme is first order in space and time and is assessed against three test cases with both infinitesimal displacements and large deformations to show the good accordance between the numerical solutions and the analytic ones. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号