首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
 This paper presents a transient one-dimensional mathematical model which simulates the pyrolysis of a single dried wood particle. The porous wood particle is considered as a two-phase system: the solid phase consisting of wood and char and the gas phase consisting of volatiles and tar. Conservation equations for mass, momentum and energy are developed for each phase. Chemical processes are described through an existing one-stage three-reactions scheme, leading separately to char, tar and volatiles evolution dynamics. The variation of transport and physical properties with temperature and with composition is presented by algebraic equations. The model presented in this paper is more advanced than the current models found in literature, since it contains physical effects not included in past models, such as cross diffusion, differing solid and gas phase temperatures and a transient gas phase momentum equation incorporating the wall friction experienced by a fluid flowing through a porous medium. Furthermore, an adequate reference system for enthalpy, based on temperature dependent reaction heats, is used. The mathematical equations with initial and boundary conditions are solved numerically by means of a commercial CFD code (PHOENICS). The validity of the pyrolysis kinetics scheme is examined through comparison with experimental data. Furthermore, the macro-particle model is validated by (1) examining the limitations and importance of the newly-modelled effects (different solid phase and gas phase temperature, cross diffusion and wall friction) and (2) making a comparison between predicted and experimental results for large particles. Received on 18 December 2000  相似文献   

2.
The flow characteristics in a spouted-fluid bed differ from those in spouted or fluidized beds because of the injection of the spouting gas and the introduction of a fluidizing gas. The flow behavior of gas–solid phases was predicted using the Eulerian–Eulerian two-fluid model (TFM) approach with kinetic theory for granular flow to obtain the flow patterns in spouted-fluid beds. The gas flux and gas incident angle have a significant influence on the porosity and particle concentration in gas–solid spouted-fluid beds. The fluidizing gas flux affects the flow behavior of particles in the fountain. In the spouted-fluid bed, the solids volume fraction is low in the spout and high in the annulus. However, the solids volume fraction is reduced near the wall.  相似文献   

3.
Under the conditions of developed fluidization there are intensive fluctuations both in the fluidizing medium and in the dispersed solid phase. These motions have a decisive effect on the rheologlcal properties of the fluidized bed, and on the chemical reactions and transport processes taking place in it [1], Thus, for example, in the experiments of Wicke and Fetting [2], who investigated the heat transfer between a fluidized bed and the walls of a heated container, the effective heat transfer coefficient was found to be higher by an order of magnitude than the corresponding result for a fluidized bed held down by a wire grid so that the random motion of the solid phase was reduced. It is clear that the initial stage of any study of the structure of the fluidized bed as a whole, and of the subsequent development of any model, must involve an investigation of local structural properties, including the above fluctuations.The time variation of the individual particle velocities is due to two different causes. First, there is the interaction between the particles both through direct collisions and through the medium of the liquid phase, and, secondly, there is the interaction with the viscous fluid. These two factors are not independent, so that the set of fluidized particles has certain features characteristic for both a dense gas, with a potential intramolecular interaction, and a set of particles executing Brownian motion in a continuous medium.Any detailed statistical theory of a system of fluidized particles must be based on a representation of the random particle motions in the medium by a stochastic process with some definite properties (see, for example, [3–4]). Ideally, this theory should lead to the formulation of a transport equation which, in view of the above properties of the system, should have some of the features of both the usual Boltzman transport equation and the Fokker-Planck equation. The solution of this final equation is, of course, more difficult than the solution of the Boltzman or Fokker-Planck equations. Moreover, there is also the problem of applying this equation to different special cases. An alternative approach is to develop an approximate, but still sufficiently effective, theory of the local properties of the fluidized bed, which would combine relative simplicity in application with sufficient rigor and generality. This kind of theory is put forward in the present paper. The conclusions to which it leads are in good qualitative agreement with experiment.The author wishes to thank G. I. Barenblatt and the participants of his seminar for useful discussions.  相似文献   

4.
Effects of variable airflow on particle motion in spout-fluid beds are studied. Computational fluid dynamics using Navier–Stokes equations for the gas phase coupled with the discrete element method using Newton’s laws for the solid phase have been employed. Results indicate that increasing the fluidizing velocity diminishes dead zones and increases both the total height of the bed and the traversed distance by particles in the steady spout-fluid bed. In pulsed airflows, two configurations are investigated, namely, the spouted pulsed-fluidized bed with pulsed flow of the fluidizing velocity, and the pulsed-spouted fluidized bed with pulsed flow of the spouting velocity. The positive effect of pulsation on particle motion is shown and the effects of parameters, such as amplitude and frequency, on the dynamics of the bed are investigated in each configuration. An increase of up to 19% in traversed distance is found for the range studied, which suggests flow pulsation as a promising technique for increasing particle mixing in spout-fluid beds.  相似文献   

5.
We present an Euler–Lagrange method for the simulation of wood gasification in a bubbling fluidized bed. The gas phase is modeled as a continuum using the 2D Navier–Stokes equations and the solid phase is modeled by a Discrete Element Method (DEM) using a soft-sphere approach for the particle collision dynamic. Turbulence is included via a Large-Eddy approach using the Smagorinsky sub-grid model. The model takes into account detailed gas phase chemistry, zero-dimensional modeling of the pyrolysis and gasification of each individual particle, particle shrinkage, and heat and mass transfer between the gas phase and the particulate phase. We investigate the influence of wood feeding rate and compare exhaust gas compositions and temperature results obtained with the model against experimental data of a laboratory scale bubbling fluidized bed reactor.  相似文献   

6.
Within the framework of the two-fluid approach, gas was treated with a large-eddy simulation and a sub-grid-scale (SGS) turbulent kinetic energy model while particles were treated with a second-order-moment method to describe the anisotropy of the fluctuating velocity. A modified Simonin model was derived for the gas–solid interphase fluctuating energy transfer. The anisotropic gas–solid flow in a circulating fluidized bed was investigated. Predictions were in good agreement with experimental data. The distributions of the second-order moment of particles and SGS-turbulent kinetic energy of gas were simulated at different solid mass fluxes. The effects of the solid mass flux on the particle second-order moment, particle anisotropic behavior, gas SGS-turbulent kinetic energy and gas SGS energy dissipation were analyzed for the circulating fluidized bed.  相似文献   

7.
A thermo-mechanical turbulence model is developed and used for predicting heat transfer in a gas–solid flow through a vertical pipe with constant wall heat flux. The new four-way interaction model makes use of the thermal kθ–τθ equations, in addition to the hydrodynamic k–τ transport, and accounts for the particle–particle and particle–wall collisions through a Eulerian/Lagrangian formulation. The simulation results indicate that the level of thermal turbulence intensity and the heat transfer are strongly affected by the particle collisions. Inter-particle collisions attenuate the thermal turbulence intensity near the wall but somewhat amplify the temperature fluctuations in the pipe core region. The hydrodynamic-to-thermal times-scale ratio and the turbulent Prandtl number in the region near the wall increase due to the inter-particle collisions. The results also show that the use of a constant or the single-phase gas turbulent Prandtl number produces error in the thermal eddy diffusivity and thermal turbulent intensity fields. Simulation results also indicate that the inter-particle contact heat conduction during collision has no significant effect in the range of Reynolds number and particle diameter studied.  相似文献   

8.
A classical Euler–Lagrangian model for gas–solid flows was extended with gas component mass conservation equations and used to obtain fundamental insights into bubble-to-emulsion phase mass transfer in bubbling gas–solid fluidized beds. Simulations of injected single rising bubbles under incipient fluidization conditions were carried out, using Geldart-A and -B particles. Phenomena observed in the simulations and those of various theoretical models used to derive phenomenological models were compared to challenge the assumptions underlying the phenomenological models. The bubble-to-emulsion phase mass transfer coefficients calculated for the simulations using Geldart-B particles were in a good agreement with predictions made using the Davidson and Harrison (1963) model. The bubble-to-emulsion phase mass transfer coefficients for Geldart-A particles were, however, much smaller than the predictions obtained from theoretical models (e.g. Chiba and Kobayashi (1970)). The newly developed model allows a detailed analysis of various hydrodynamic aspects and their effects on the mass transfer characteristics in and around rising bubbles in fluidized beds.  相似文献   

9.
The flow characteristics in a spouted-fluid bed differ from those in spouted or fluidized beds because of the injection of the spouting gas and the introduction of a fluidizing gas. The flow behavior of gas-solid phases was predicted using the Eulerian-Eulerian two-fluid model (TFM) approach with kinetic theory for granular flow to obtain the flow patterns in spouted-fluid beds. The gas flux and gas incident angle have a significant influence on the porosity and particle concentration in gas-solid spouted-fluid beds. The fluidizing gas flux affects the flow behavior of particles in the fountain. In the spouted-fluid bed, the solids volume fraction is low in the spout and high in the annulus. However, the solids volume fraction is reduced near the wall.  相似文献   

10.
The fluidized beds are widely used in a variety of industries where heat transfer properties of the fluidized system become important for successful operation. Fluidized are preferred in heat recovery processes because of their unique ability of rapid heat transfer and uniform temperature. Fine powders handling and processing technologies have received widespread attention due to increased use of fine powders in the manufacture of drugs, cosmetics, plastics, catalysts, energetics and other advanced materials. A better understanding of fluidization behavior of fine powders is of great importance in applications involving heat transfer, mass transfer, mixing, transporting and modifying surface properties etc. The difficulty in putting the fine powders in suspension with the fluidizing gas is related to the cohesive structure and to the physical forces between the primary particles. The sound waves agitate bubbling and this results in improving solids mixing in the fluidized bed. The improved solids mixing results in uniform and smooth fluidization, which leads to better heat transfer rates in the fluidized bed.  相似文献   

11.
A Euler–Lagrangian simulation was employed for a comprehensive parameter study of wood gasification in a fluidized charcoal bed. The parameters that were varied include the initial bed temperature, fuel mass flow rate, inert tar fraction, and kinetic energy losses caused by particle–particle and particle–wall collisions. The results of each parameter variation are compared with a base scenario, previously described in detail in Part I of this study (Gerber & Oevermann, 2014). The results are interpreted by comparing the reactor outlet temperature, averaged particle temperature, overall wood mass, overall charcoal mass, concentrations of several gaseous species, and axial barycenter data for particles obtained with different sets of parameters. The inert tar fraction and fuel mass flow rate are the most sensitive parameter, while the particle–particle and particle–wall contact parameters have only a small impact on the results. Increasing the reactive tar components by 19% almost doubled the amount of reactive tars at the reactor outlet, while decreasing the restitution coefficients of the particle collisions by 0.2 results in higher overall gas production but almost no change in bed height. Herein, our numerical results are discussed in detail while assessing the model restrictions.  相似文献   

12.
The heat transfer characteristics around a single horizontal heated tube immersed in air fluidized bed was investigated, to clarify the mechanism of heat transfer in a fluidized bed heat exchanger. The local heat transfer coefficient around the tube was measured at various fluidization velocities and five different solid particles. The experimental values of the local heat transfer coefficient at the minimum fluidization velocity condition were correlated with the particle size in two empirical equations. The predicted results were in good agreement with the experiment data.  相似文献   

13.
《中国颗粒学报》2005,3(1-2):26
The unique characteristics of gas-solids two-phase flow and fluidization in terms of the flow structures and the apparent behavior of particles and fluid-particle interactions are closely linked to physical properties of the particles, operating conditions and bed configurations. Fluidized beds behave quite differently when solid properties, gas velocities or vessel geometries are varied. An understanding of hydrodynamic changes and how they, in turn, influence the transfer and reaction characteristics of chemical and thermal operations by variations in gas-solid contact, residence time, solid circulation and mixing and gas distribution is very important for the proper design and scale-up of fluidized bed reactors. In this paper, rather than attempting a comprehensive survey, we concentrate on examining some important positive and negative impacts of particle sizes, bubbles, clusters and column walls on the physical and chemical aspects of chemical reactor performance from the engineering application point of view with the aim of forming an adequate concept for guiding the design of multiphase fluidized bed chemical reactors.One unique phenomenon associated with particle size is that fluidized bed behavior does not always vary monotonically with changing the average particle size. Different behaviors of particles with difference sizes can be well understood by analyzing the relationship between particle size and various forces. For both fine and coarse particles, too narrow a distribution is generally not favorable for smooth fluidization. A too wide size distribution, on the other hand, may lead to particle segregation and high particle elutriation. Good fluidization performance can be established with a proper size distribution in which inter-particle cohesive forces are reduced by the lubricating effect of fine particles on coarse particles for Type A, B and D particles or by the spacing effect of coarse particles or aggregates for Type C powders.Much emphasis has been paid to the negative impacts of bubbles, such as gas bypassing through bubbles, poor bubble-to-dense phase heat & mass transfer, bubble-induced large pressure fluctuations, process instabilities, catalyst attrition and equipment erosion, and high entrainment of particles induced by erupting bubbles at the bed surface. However, it should be noted that bubble motion and gas circulation through bubbles, together with the motion of particles in bubble wakes and clouds, contribute to good gas and solids mixing. The formation of clusters can be attributed to the movement of trailing particles into the low-pressure wake region of leading particles or clusters. On one hand, the existence of down-flowing clusters induces strong solid back-mixing and non-uniform radial distributions of particle velocities and holdups, which is undesirable for chemical reactions. On the other hand, the formation of clusters creates high solids holdups in the riser by inducing internal solids circulations, which are usually beneficial for increasing concentrations of solid catalysts or solid reactants.Wall effects have widely been blamed for complicating the scale-up and design of fluidized-bed reactors. The decrease in wall friction with increasing the column diameter can significantly change the flow patterns and other important characteristics even under identical operating conditions with the same gas and particles. However, internals, which can be considered as a special wall, have been used to improve the fluidized bed reactor performance.Generally, desirable and undesirable dual characteristics of interaction between particles and fluid are one of the important natures of multiphase flow. It is shown that there exists a critical balance between those positive and negative impacts. Good fluidization quality can always be achieved with a proper choice of right combinations of particle size and size distribution, bubble size and wall design to alleviate the negative impacts.  相似文献   

14.
Multistage fluidized beds are frequently used for product drying in industry. One advantage of these fluidized beds is that they can achieve a high throughput, when operated continuously. In this study, γ-Al2O3 particles were dried in a pilot-scale horizontal fluidized bed, without considering any comminution effects. For each experiment, the particle moisture content distribution and residence time distribution were determined. To take into account particle back mixing in our experiments, a one-dimensional population balance model that considers particle residence time was introduced into a fluidized bed-drying model. Experimental particle residence time distributions were reproduced using a tank-in-series model. Subsequently, the moisture content distribution was implemented, as a second dimension to the population balance in this model. These two-dimensional simulations were able to describe the experimental data, especially the spread in the residual particle moisture distribution, much more accurately than one-dimensional simulations. Using this novel two-dimensional model, the effects of different operating parameters (process gas temperature, solid feed rate, superficial air velocity) on the particle moisture content distribution were systematically studied.  相似文献   

15.
A three phase mathematical model of simultaneous heat and mass transfer of a batch operation for a fluidized bed is presented. The three phases are a solid free bubble, emulsion and solid phases. The model employs an elaborate five equations porosity model. Various correlations for the minimum fluidization parameters are surveyed and compared with the adequate one is being adopted in the model. The governing equations together with the boundary and initial conditions are presented for a cyclic operation of the bed. These are numerically solved for a test case where the bed is charged with silica gel particles to dehumidify a process air stream. Thus the bed works in an air dehumidification mode/bed regeneration mode cyclic operation with matching conditions.Results for the bed operation are presented as the temperature and humidity ratio variations for the test case. The results indicate the ability of the developed model to provide the␣required data for the concerned batch operated fluidized bed. Received on 11 May 1998  相似文献   

16.
17.
In connection with an analysis of transport processes in fluidized beds a study is made of the steady motion of a system of local inhomogeneities of the bed porosity, which are modeled by packets of particles. The interaction of the inhomogeneities is taken into account on the basis of a cell model. The velocity fields and the pressure distributions of the solid and gas phases together with the rising and sinking velocities of the system of packets are determined in the approximation of a double continuum. The flow regimes of the fluidizing agent are investigated. It is shown that with increasing concentration of packets in the bed the velocity of their motion decreases, and the circulation region of the dispersion medium surrounding a packet or trapped within it contracts. The dependence of the rate of flow of the fluidizing agent through the transverse section of the reactor on the concentration of packets in the bed is found.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 42–49, January–February, 1991.  相似文献   

18.
LBM-DEM耦合方法通常是指一种颗粒流体系统直接数值模拟算法,即是一种不引入经验曳力模型的计算方法,颗粒尺寸通常比计算网格的长度大一个量级,颗粒的受力通过表面的粘性力与压力积分获得,其优点是能描述每个颗粒周围的详细流场,产生详细的颗粒-流体相互作用的动力学信息,可以探索颗粒流体界面的流动、传递和反应的详细信息及两相相互作用的本构关系,但其缺点是计算量巨大,无法应用于真实流化床过程模拟。本文针对气固流化床中的流体以及固体颗粒间的多相流体力学行为,建立了一种稠密气固两相流的介尺度LBMDEM模型,即LBM-DEM耦合的离散颗粒模型,实现在颗粒尺度上流化床的快速离散模拟。该耦合模型采用格子玻尔兹曼方法(LBM)描述气相的流动和传递行为,离散单元法(DEM)用于描述颗粒相的运动,并利用能量最小多尺度(EMMS)曳力解决气固耦合不成熟问题,以提高其模拟精度。通过经典快速流态化的模拟,验证了介尺度LBM-DEM耦合模型的有效性。模拟结果表明介尺度LBM-DEM模型是一种探索实验室规模气固系统的有力手段。  相似文献   

19.
In the present paper equations are obtained for determining the temperature field in a fluidized layer. The heat and mass transfer processes in a fluidized bed depend significantly on the motion of the solid particles which form the bed. In any small volume of a fluidized bed with nonuniform thermal conditions there are particles with different average temperatures. Therefore it is natural to resort to the statistical representation of such a system, developed previously in [1, 2], for the study of the heat transfer processes. The expression obtained here for the heat conductivity coefficient of the bed is in good qualitative agreement with the experimental data.The author wishes to thank V. G. Levich for his interest and valuable discussions.  相似文献   

20.
Measurements are made on the heat-transfer coefficients between particles and fluid in the aggregative fluidized bed. In order to evaluate the heat-transfer coefficients, a proposed model takes into account of the variation of the particles-temperature and the fluid-temperature distributions throughout the bed is developped on the basis of an experimental investigation of the fluidizing behavior. The heat-transfer coefficients obtained by conforming the outlet-air temperature profile to be predicted with the one measured are found to be varied significantly depending on the static bed height, as well as particle diameter and fluid velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号