首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
研究了功能梯度材料扁薄锥壳在横向非均匀升温场中的几何非线性大变形问题.基于von Kármán几何非线性理论推导出了以中面位移为基本未知量的功能梯度扁薄锥壳在横向非均匀热载荷作用下的轴对称大挠度控制方程.采用打靶法数值求解所得非线性常微分方程边值问题,得到了锥壳的大挠度弯曲变形数值解.给出了锥壳的变形与其形状参数、载荷和材料参数等变化的特征关系曲线,分析和讨论了温度参数和材料梯度变化参数对变形的影响.  相似文献   

2.
热荷载作用下Timoshenko功能梯度夹层梁的静态响应   总被引:1,自引:0,他引:1  
在精确考虑轴线伸长和一阶横向剪切变形的基础上建立了Timoshenko功能梯度夹层梁在热载荷作用下的几何非线性控制方程.采用打靶法数值求解所得强非线性边值问题,获得了两端固支功能梯度夹层梁在横向非均匀升温作用下的静态热过屈曲和热弯曲变形数值解.分析了功能梯度材料参数变化、不同表层厚度和升温参数对夹层梁弯曲变形、拉-弯耦...  相似文献   

3.
研究了四边简支条件下功能梯度圆锥壳的非线性自由振动。首先,通过Voigt模型和幂律分布模型描述了功能梯度材料的物理属性。然后,考虑von-Karman几何非线性建立了功能梯度圆锥壳的能量表达式,利用Hamilton原理推出圆锥壳的运动方程。在此基础上,采用Galerkin法,只考虑横向振动,功能梯度圆锥壳运动方程可简化为单自由度非线性振动微分方程。最后,通过改进的L-P法和Runge-Kutta法求解非线性振动方程,讨论功能梯度圆锥壳的非线性振动响应,分析几何参数和陶瓷体积分数指数对圆锥壳非线性频率响应的影响。结果表明,几何参数对非线性频率和响应的影响相较于陶瓷体积分数指数更明显;圆锥壳的几何参数和陶瓷体积分数指数通过改变非线性频率影响振动响应;功能梯度圆锥壳呈弹簧渐硬非线性振动特性。  相似文献   

4.
功能梯度变曲率曲梁的几何非线性模型及其数值解   总被引:1,自引:0,他引:1  
基于弹性曲梁平面问题的精确几何非线性理论,建立了功能梯度变曲率曲梁在机械和热载荷共同作用下的无量纲控制方程和边界条件,其中基本未知量均被表示为变形前的轴线坐标的函数.以椭圆弧曲梁为例,采用打靶法求解非线性常微分方程的两点边值问题,获得了两端固定功能梯度椭圆弧曲梁在横向非均匀升温下的热弯曲变形数值解,分析了材料梯度指数、温度参数、结构几何参数等对曲梁受力及变形的影响.  相似文献   

5.
粘贴压电层功能梯度材料Timoshenko梁的热过屈曲分析   总被引:1,自引:0,他引:1  
研究了上下表面粘贴压电层的功能梯度材料Timoshenko梁在升温及电场作用下的过屈曲行为。在精确考虑轴线伸长和一阶横向剪切变形的基础上,建立了压电功能梯度Timoshenko层合梁在热-电-机械载荷作用下的几何非线性控制方程。其中,假设功能梯度的材料性质沿厚度方向按照幂函数连续变化,压电层为各向同性均匀材料。采用打靶法数值求解所得强非线性边值问题,获得了在均匀电场和横向非均匀升温场内两端固定Timoshenko梁的静态非线性屈曲和过屈曲数值解。并给出了梁的变形随热、电载荷及材料梯度参数变化的特性曲线。结果表明,通过施加电压在压电层产生拉应力可以有效地提高梁的热屈曲临界载荷,延缓热过屈曲发生。由于材料在横向的非均匀性,即使在均匀升温和均匀电场作用下,也会产生拉-弯耦合效应。但是对于两端固定的压电-功能梯度材料梁,在横向非均匀升温下过屈曲变形仍然是分叉形的。  相似文献   

6.
夹层FGM圆柱壳在扭转载荷作用下的弹性稳定性   总被引:1,自引:0,他引:1  
李世荣  王爽 《力学学报》2010,42(6):1172
采用半解析方法研究了两端简支的功能梯度夹层圆柱壳在端部扭转载荷作用下的弹性稳定性.考虑圆柱壳的里外表层为均匀材料,中间层为材料性质沿厚度方向连续变化的功能梯度材料,并且在界面处的材料性质保持连续.基于Flügge薄壳理论,建立了位移形式的结构静态屈曲控制方程.根据边界条件将位移表示为三角级数形式,获得包含柱壳端部扭转载荷参数的近似线性代数特征值问题,并通过数值方法求得了表征结构失稳特征的临界载荷.数值结果表明,临界载荷随着半径与厚度比的增加而减小,随着功能梯度中间层的弹性模量的平均值的增加而增加.  相似文献   

7.
李杨  秦庆华  张亮亮  高阳 《力学学报》2020,52(5):1286-1294
两种或多种不同性质材料组成的层状结构可以满足工业发展的需求. 然而, 材料属性在接触面的突变问题, 容易导致层间界面处产生应力集中、裂纹以及分层等问题. 功能梯度材料利用连续变化的组分梯度来代替突变界面, 可以消除界面处的物理性能突变, 提高结构的粘结强度. 本文以一维准晶功能梯度层合圆柱壳为研究对象, 利用类Stroh公式和传递矩阵方法, 建立了材料参数沿径向呈现幂函数变化的层合圆柱壳模型, 获得了简支边界条件对应的一维准晶功能梯度层合圆柱壳的热电弹性精确解. 数值算例中讨论了层合圆柱壳内外表面承受温度载荷时, 功能梯度指数因子对温度场、电场、声子场和相位子场的影响, 尤其是对层合圆柱壳内外表面的影响. 结果表明, 指数因子改变了材料参数的空间分布情况, 进而对温度场、电场、声子场和相位子场都有影响; 增加功能梯度指数因子, 可减小温度载荷引起的内表面变形, 进而提升结构强度. 本文得到的结果可以为功能梯度准晶层合圆柱壳的设计和制造提供可靠的理论依据.   相似文献   

8.
两种或多种不同性质材料组成的层状结构可以满足工业发展的需求. 然而, 材料属性在接触面的突变问题, 容易导致层间界面处产生应力集中、裂纹以及分层等问题. 功能梯度材料利用连续变化的组分梯度来代替突变界面, 可以消除界面处的物理性能突变, 提高结构的粘结强度. 本文以一维准晶功能梯度层合圆柱壳为研究对象, 利用类Stroh公式和传递矩阵方法, 建立了材料参数沿径向呈现幂函数变化的层合圆柱壳模型, 获得了简支边界条件对应的一维准晶功能梯度层合圆柱壳的热电弹性精确解. 数值算例中讨论了层合圆柱壳内外表面承受温度载荷时, 功能梯度指数因子对温度场、电场、声子场和相位子场的影响, 尤其是对层合圆柱壳内外表面的影响. 结果表明, 指数因子改变了材料参数的空间分布情况, 进而对温度场、电场、声子场和相位子场都有影响; 增加功能梯度指数因子, 可减小温度载荷引起的内表面变形, 进而提升结构强度. 本文得到的结果可以为功能梯度准晶层合圆柱壳的设计和制造提供可靠的理论依据.  相似文献   

9.
贾金政  马连生 《应用力学学报》2020,(1):231-238,I0016
基于一阶非线性梁理论和物理中面概念,导出了纵横向载荷作用下功能梯度材料(FGM)梁非线性弯曲和过屈曲问题的控制方程,并获得了该问题的精确解;据此解研究了梯度材料性质、外载荷、横向剪切变形以及边界条件等因素对功能梯度材料梁非线性力学行为的影响,分析中假设功能梯度材料性质只沿梁厚度方向,并按成分含量的幂指数函数形式变化。结果表明:纵横载荷共同作用下,功能梯度梁的弯曲构形将有无限多个;随着梯度指数的增大,梁的变形减小,临界载荷升高;随着长高比的增大,横向剪切变形的影响减小。  相似文献   

10.
热/机械载荷下功能梯度材料矩形厚板的弯曲行为   总被引:5,自引:2,他引:5  
采用Reddy高阶剪切板理论,考虑材料物性参数随坐标和温度变化的特性,研究在均匀变化的温度场内功能梯度材料矩形板在面内与横向载荷共同作用下的横向弯曲问题,基于一维DQ法和Galerkin技术,给出了一对边固支,另对边任意约束时板弯曲问题的半解析解,以Si3N4/SUS304板为例考察了材料组份,温度场,面内载荷及边界约束条件等对功能梯度材料板弯曲行为的影响。  相似文献   

11.
Hong-Liang Dai  Ting Dai 《Meccanica》2014,49(5):1069-1081
An analytic study for thermoelastic bending of a functionally graded material (FGM) cylindrical shell subjected to a uniform transverse mechanical load and non-uniform thermal loads is presented. Based on the classical linear shell theory, the equations with the radial deflection and horizontal displacement are derived out. An arbitrary material property of the FGM cylindrical shell is assumed to vary through the thickness of the cylindrical shell, and exact solution of the problem is obtained by using an analytic method. For the FGM cylindrical shell with fixed and simply supported boundary conditions, the effects of mechanical load, thermal load and the power law exponent on the deformation of the FGM cylindrical shell are analyzed and discussed.  相似文献   

12.
An analytical solution for buckling of an eccentrically stiffened sandwich truncated conical shell is investigated. The shell consists of two functionally graded material (FGM) coating layers and a core layer which are metal or ceramic subjected to an axial compressive load and an external uniform pressure. Shells are reinforced by stringers and rings, in which the material properties of shells and stiffeners are graded in the thickness direction following a general sigmoid law distribution. Two models of coated shell-stiffener arrangements are investigated. The change of the spacing between stringers in the meridional direction is taken into account. A couple set of three-variable-coefficient partial differential equations in terms of displacement components are solved by the Galerkin method. A closed-form expression for determining the buckling load is obtained. The numerical examples are presented and compared with previous works.  相似文献   

13.
By means of a comprehensive theory of elasticity, namely, a nonlocal strain gradient continuum theory, size-dependent nonlinear axial instability characteristics of cylindrical nanoshells made of functionally graded material (FGM) are examined. To take small scale effects into consideration in a more accurate way, a nonlocal stress field parameter and an internal length scale parameter are incorporated simultaneously into an exponential shear deformation shell theory. The variation of material properties associated with FGM nanoshells is supposed along the shell thickness, and it is modeled based on the Mori-Tanaka homogenization scheme. With a boundary layer theory of shell buckling and a perturbation-based solving process, the nonlocal strain gradient load-deflection and load-shortening stability paths are derived explicitly. It is observed that the strain gradient size effect causes to the increases of both the critical axial buckling load and the width of snap-through phenomenon related to the postbuckling regime, while the nonlocal size dependency leads to the decreases of them. Moreover, the influence of the nonlocal type of small scale effect on the axial instability characteristics of FGM nanoshells is more than that of the strain gradient one.  相似文献   

14.
The global bifurcations and multi-pulse orbits of an aero-thermo-elastic functionally graded material (FGM) truncated conical shell under complex loads are investigated with the case of 1:2 internal resonance and primary parametric resonance. The method of multiple scales is utilized to obtain the averaged equations. Based on the averaged equations obtained, the normal form theory is employed to find the explicit expressions of normal form associated with a double zero and a pair of pure imaginary eigenvalues. The energy-phase method developed by Haller and Wiggins is used to analyze the multi-pulse homoclinic bifurcations and chaotic dynamics of the FGM truncated conical shell. The analytical results obtained here indicate that there exist the multi-pulse Shilnikov-type homoclinic orbits for the resonant case which may result in chaos in the system. Homoclinic trees which describe the repeated bifurcations of multi-pulse solutions are found. The diagrams show a gradual breakup of the homoclinic tree in the system as the dissipation factor is increased. Numerical simulations are presented to illustrate that for the FGM truncated conical shell, the multi-pulse Shilnikov-type chaotic motions can occur. The influence of the structural-damping, the aerodynamic-damping, and the in-plane and transverse excitations on the system dynamic behaviors is also discussed by numerical simulations. The results obtained here mean the existence of chaos in the sense of the Smale horseshoes for the FGM truncated conical shell.  相似文献   

15.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

16.
Here, the nonlinear thermo-elastic buckling/post-buckling characteristics of laminated circular conical–cylindrical/conical–cylindrical–conical joined shells subjected to uniform temperature rise are studied employing semi-analytical finite element approach. The nonlinear governing equations, considering geometric nonlinearity based on von Karman’s assumption for moderately large deformation, are solved using Newton–Raphson iteration procedure coupled with displacement control method to trace the pre-buckling/post-buckling equilibrium path. The presence of asymmetric perturbation in the form of small magnitude load spatially proportional to the linear buckling mode shape is assumed to initiate the bifurcation of the shell deformation. The study is carried out to highlight the influences of semi-cone angle, material properties and number of circumferential waves on the nonlinear thermo-elastic response of the different joined shell systems.  相似文献   

17.
在建立旋转壳体的非线性磁弹性运动方程的基础上,研究了电磁场和机械载荷联合作用下载流圆锥薄壳的磁弹性效应.通过算例,得到了载流圆锥薄壳的位移及应力与通电电流强度之间的关系.解决了圆锥薄壳顶点处的奇异性问题,给出了轴对称条件下的数值解.计算结果表明:改变通电电流强度,可以改变载流圆锥薄壳的应力与变形状态,达到控制圆锥薄壳的受力与变形的目的.  相似文献   

18.
FGM components are constructed to sustain high temperature gradients. There are many applications where the FGM components are vulnerable to transient thermal shocks. If a component is already under compressive external loads (e.g. under a combination of axial compression and external pressure), the mentioned thermal shocks will cause the component to exhibit dynamic behavior and in some cases may lead to buckling. On the other hand, a preheated FGM component may undergo dynamic mechanical loads. Only static thermal buckling investigations were developed so far for the FGM shells. In the present paper, dynamic buckling of a pre-stressed, suddenly heated imperfect FGM cylindrical shell and dynamic buckling of a mechanically loaded imperfect FGM cylindrical shell in thermal environment, with temperature-dependent properties are presented. The general form of Green’s strain tensor in curvilinear coordinates and a high order shell theory proposed already by the author are used. Instead of using semi-analytical solutions that rely on the validity of the separation of variables concept, the complicated nonlinear governing equations are solved using the finite element method. Buckling load is detected by a modified Budiansky criterion proposed by the author. The effects of temperature-dependency of the material properties, volume fraction index, load combination, and initial geometric imperfections on the thermo-mechanical post-buckling behavior of a shell with two constituent materials are evaluated. The results reveal that the volume fraction index and especially, the differences between the thermal stresses created in the outer and the inner surfaces may change the buckling behavior. Furthermore, temperature gradient and initial imperfections have less effect on buckling of a shell subjected to a pure external pressure.  相似文献   

19.
Thin-walled weakly conical and cylindrical shells with arbitrary open, simply or multiply closed contour of transverse cross-sections strengthened by longitudinal elements (such as stringers and longerons) are used in the design of wings, fuselages, and ship hulls. To avoid significant deformations of the contour, such structures are stiffened by transverse elements (such as ribs and frames). Various computational models and methods are used to analyze the stress-strain states of such compound structures. In particular, the ground stress-strain states in bending, transverse shear, and twisting of elongated structures are often analyzed with the use of the theory of thin-walled beams [1] based on the hypothesis of free (unconstrained) warping and bending of the contour of transverse cross-sections. In general, the computations with the contour warping and bending constraints caused by the variable load distribution, transverse stiffening elements, and the difference in the geometric and rigidity parameters of the shell cells are usually performed by the finite element method or the superelement (substructure) method [2, 3]. In several special cases (mainly for separate cells of cylindrical and weakly conical shells located between transverse stiffening elements, with the use of some additional simplifying assumptions), efficient variation methods for computations in displacements [4–8] and in stresses [9] were developed, so that they reduce the problem to a system of ordinary differential equations. In the one-and two-term approximations, these methods permit obtaining analytic solutions, which are convenient in practical computations. But for shells with multiply closed contours of transverse cross-sections and in the case of exact computations by using the Vlasov variational method [4], difficulties are encountered in choosing the functions representing the warping and bending of the contour of transverse cross-sections. In [10], in computations of a cylindrical shell with simply closed undeformed contour of the transverse section, warping was represented in the form of expansions in the eigenfunctions orthogonal on the contour, which were determined by the method of separation of variables from a special integro-differential equation. In [11], a second-order ordinary differential equation of Sturm-Liouville type was obtained; its solutions form a complete system of orthogonal functions with orthogonal derivatives on an arbitrary open simply or multiply closed contour of a membrane cylindrical shell stiffened by longitudinal elements. The analysis of such a shell with expansion of the displacements in these functions leads to ordinary differential equations that are not coupled with each other. In the present paper, by using the method of separation of variables, we obtain differential and the corresponding variational equations for numerically determining complete systems of eigenfunctions on an arbitrary contour of a discretely stiffened membrane weakly conical shell and a weakly conical shell with undeformed contour. The obtained systems of eigenfunctions are used to reduce the problem of deformation of shells of these two types to uncoupled differential equations, which can be solved exactly.  相似文献   

20.
The nonlinear stability of sandwich cylindrical shells comprising porous functionally graded material(FGM) and carbon nanotube reinforced composite(CNTRC)layers subjected to uniform temperature rise is investigated. Two sandwich models corresponding to CNTRC and FGM face sheets are proposed. Carbon nanotubes(CNTs) in the CNTRC layer are embedded into a matrix according to functionally graded distributions. The effects of porosity in the FGM and the temperature dependence of properties of all constituent materials are considered. The effective properties of the porous FGM and CNTRC are determined by using the modified and extended versions of a linear mixture rule, respectively. The basic equations governing the stability problem of thin sandwich cylindrical shells are established within the framework of the Donnell shell theory including the von K'arm'an-Donnell nonlinearity. These equations are solved by using the multi-term analytical solutions and the Galerkin method for simply supported shells.The critical buckling temperatures and postbuckling paths are determined through an iteration procedure. The study reveals that the sandwich shell model with a CNTRC core layer and relatively thin porous FGM face sheets can have the best capacity of thermal load carrying. In addition, unlike the cases of mechanical loads, porosities have beneficial effects on the nonlinear stability of sandwich shells under the thermal load. It is suggested that an appropriate combination of advantages of FGM and CNTRC can result in optimal efficiency for advanced sandwich structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号