首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
介绍了1种把Eulerian计算过程和Lagrangian计算过程耦合起来的数值技术,编写了计算程序,把爆炸流场作用过程和结构动力学响应过程的计算结合起来,实现了爆炸流场对结构加载和结构动力响应 及对爆炸流场反作用过程的模拟.利用Eulerian过程的流体弹塑性有限差分计算程序MMIC(multi-materials ...  相似文献   

2.
入水问题的Euler-Lagrange流固耦合数值模以技术研究   总被引:1,自引:1,他引:0  
针对结构入水过程的特点,建立了一种把Eulerian计算过程和Lagrangian计算过程耦合起来的数值技术,编写了计算程序,把结构对水作用的过程和结构动力学响应过程的计算结合起来,实现了结构与水之间流固耦合作用过程的模拟.其中水、空气的运动利用Eulerian过程的流体弹塑性有限差分计算程序进行模拟,结构的运动变形利用Lagrangian过程的结构动力学有限元计算程序模拟结构响应.通过板入水问题的计算结果与商业软件计算结果进行比较,验证了计算方法对流固间相互作用处理的正确性.本文计算程序可用于一般入水问题的结构响应-流场运动分析中.  相似文献   

3.
高银军  闫凯  田宙  刘峰 《爆炸与冲击》2015,35(3):289-295
基于强爆炸火球光辐射的多群辐射流体力学方法, 采用算子分裂方法将方程组分裂为对流项和刚性源项, 其中源项部分根据方程形式, 进一步分裂为各群内的单独求解。数值计算表明:该方法克服了直接求解过程中辐射与流体耦合所带来的强不稳定性, 时间步长大幅提高, 给出的火球光辐射能谱特征与已有规律一致。可为定量分析光辐射能谱特征提供有效手段。  相似文献   

4.
根据Π定理推导了远距离爆炸荷载作用下钢框架原型结构与缩比模型的几何相似律表达式。基于已有的钢框架子结构爆炸实验,采用AUTODYN建立了钢框架子结构数值模型,验证了流固耦合方法在结构爆炸响应分析中的可靠性。在此基础上,对比了流固耦合方法和解析爆炸边界方法在钢框架远距离爆炸数值模拟中的准确性和计算效率,结果表明,解析爆炸边界方法可以合理地模拟远距离爆炸荷载作用下钢框架的动态响应,且计算效率较高。最后,采用该方法分析了具有不同相似比的两层三跨钢框架结构在远距离爆炸荷载作用下的动态响应及毁伤效应,结果表明:该结构的动态响应和毁伤效应符合几何相似规律。  相似文献   

5.
光滑粒子流体动力学-有限元耦合算法(SPH-FEM)较好地结合了SPH和FEM的优势,近年来逐渐被引入冲击动力学相关问题研究中。然而早期的研究对象多为单一材料的简单结构,所取得的研究成果距离实际工程应用仍有一定差距。为此,在总结前人工作的基础上,对SPH-FEM耦合算法进行适当改进,通过引入复合材料损伤模型,对复合材料蒙皮结构飞行器舱段结构进行建模计算,分析其在爆炸冲击激励下的冲击动力学特性。将数值计算结果与试验结果进行对比分析,验证该算法和模型的有效性和准确性,初步实现SPH-FEM的工程实际应用。最后总结了复合材料蒙皮结构飞行器在爆炸冲击激励下的一系列结构动态响应规律,以期为航天飞行器结构设计与防护提供参考。  相似文献   

6.
<正>爆炸与冲击动力学是一个交叉性的力学分支学科,主要研究爆炸、冲击和能量突然沉积等强动载荷下介质、材料与结构的力学响应、效应及工程技术应用。当前,爆炸与冲击动力学的发展重点和学科前沿主要有非平衡爆轰与爆轰波结构,复杂介质状态方程的本构理论与材料动态力学,复杂结构高速撞击与侵彻动力学,超高速碰撞新原理和新方法,多场耦合模型建立与多尺度高精度计算方法以及在武器装备、航空航天和民用安全等领域的应用研究等。爆炸与冲击动力  相似文献   

7.
水下爆炸导致舰船结构毁伤是一个复杂的非线性大变形流固耦合过程,高精度的流固耦合计算是获得高置信模拟结果的关键。基于浸没边界思想,本文提出一种面向大变形壳理论的流固耦合数值方法,可精确刻画流固耦合界面并高效求解流固界面约束方程。基于该方法,本文提出了完整的适用于水下爆炸舰船结构毁伤的大变形流固耦合数值计算方案,并基于大规模并行编程框架,研发形成适用于舰船结构毁伤的流固耦合大规模并行计算软件。与泰勒平板理论解和水下爆炸结构冲击响应实验数据等进行对比表明,本文方法可有效模拟大变形流固耦合工程问题,具备较高数值求解精度。在此基础上,完成了水下爆炸整船结构毁伤过程大规模数值模拟。该方法可有效应用于舰船毁伤等级评估,应用前景广阔。  相似文献   

8.
近场水下爆炸瞬态强非线性流固耦合无网格数值模拟研究   总被引:2,自引:1,他引:1  
近场水下爆炸涉及多相流体的掺杂耦合以及结构的大变形、损伤和断裂等瞬态强非线性现象, 传统的网格算法在模拟近场水下爆炸时面临结构网格畸变、多相界面捕捉精度不足等难题, 鉴于此, 本文建立了完全无网格的近场水下爆炸冲击波和气泡全物理过程瞬态强非线性流固耦合动力学模型. 流体采用基于黎曼求解器的光滑粒子流体动力学(SPH)方法求解, 结构采用重构核粒子法(RKPM)求解, 并基于法向通量边界条件实现流固耦合. 为提高SPH对流场间断的求解精度, 引入黎曼问题思想并结合MUSCL重构算法, 为解决流场粒子体积变化剧烈导致的精度下降问题, 应用了自适应粒子分割与合并方法. 为模拟水下爆炸对结构造成的损伤断裂, 基于退化实体几何表述, 采用Lemaitre损伤算法, 建立了RKPM壳结构断裂损伤模型. 依据所建立的SPH-RKPM流固耦合模型, 对近场水下爆炸冲击波传播、气泡脉动与射流以及结构毁伤进行了模拟, 将得到的冲击波载荷、气泡演化以及结构响应与实验值和其他数值解对比, 验证了当前建立的SPH-RKPM流固耦合模型的有效性和精度, 并给出了水下爆炸载荷特性及其对结构的流固耦合毁伤机制与规律, 旨在为近场水下爆炸载荷预报提供理论和基础性技术支撑, 为毁伤威力评估和舰船防护结构设计提供参考.   相似文献   

9.
针对舱内爆炸载荷形式复杂、作用时间长、缺乏有效的简化描述方法的问题,首先采用显式动力学计算程序开展了内爆载荷作用下钢板动态响应的数值计算,在与试验结果对比验证的基础上分析了金属板的内爆载荷饱和冲量。通过对216种不同爆炸载荷加载时长与金属板响应关系的分析,提出了内爆炸载荷作用下结构最大变形所对应的饱和时间计算经验公式,并给出了饱和时间的无量纲系数建议值。考虑到内爆载荷初始冲击波的影响,结合爆炸载荷饱和作用时间的规律,提出了封闭空间爆炸载荷的矩形载荷等效方法,对比了18组简化载荷与耦合载荷分别作用下钢板的动力响应,验证了等效方法的有效性。  相似文献   

10.
根据当前受限空间内气体爆炸效应的研究成果,综述了建筑物内气体爆炸事故发生时室内压力、结构荷载及动力响应的简化计算方法,内容包括室内气体爆燃压力及结构荷载特点、爆燃压力和结构响应计算模型等。重点阐述了基于实验数据的泄爆压力关联式和反映燃气爆燃主要物理过程的压力简化计算模型,并分析了各类计算模型的适用性、存在问题以及爆燃荷载特征对结构响应的影响;探讨了考虑建筑功能特点影响的工程简化计算模型,对建筑物内爆燃压力计算应重点考虑点火位置、爆室几何特征、火焰燃烧速率、湍流效应以及泄爆结构开启过程等因素;对爆燃事故中结构响应的计算,应考虑爆燃荷载时程、结构初始静载与动载耦合、结构支座边界受载变化等因素。  相似文献   

11.
The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data.  相似文献   

12.
13.
The high-frequency elastodynamic problem involving the excitation of an interface crack of finite width lying between two dissimilar anisotropic elastic half-planes has been analyzed. The crack surface is excited by a pair of time-harmonic antiplane line sources situated at the middle of the cracked surface. The problem has first been reduced to one with the interface crack lying between two dissimilar isotropic elastic half-planes by a transformation of relevant co-ordinates and parameters. The problem has then been formulated as an extended Wiener–Hopf equation (cf. Noble, 1958) and the asymptotic solution for high-frequency has been derived. The expression for the stress intensity factor at the crack tips has been derived and the numerical results for different pairs of materials have been presented graphically.  相似文献   

14.
In this work, a numerical method has been developed to investigate the adhesionless contact mechanics between rough surfaces. To solve the elastic problem a boundary elements approach is used with self-equilibrated square elements. The domain of integration is discretized developing an “intelligent” adaptive mesh and obtaining a considerable memory saving. The numerical convergence of the method has been verified by comparing the results with the Hertzian solution and by checking the stress probability distribution at the contact interface. The methodology has been then utilized to analyse the contact between an elastic flat substrate and a periodic numerically generated self-affine fractal rigid surface. The fractal surface has been generated by employing spectral methods. The results of our investigation supports the findings of some analytical theories (Persson, 2001) and numerical findings (Yang et al., 2006, Hyun et al., 2004, Carbone and Bottiglione, 2008, Campana and Muser, 2007) in terms of linearity between contact area and load and stress probability distributions.  相似文献   

15.
The shape of the interface between two simple fluids having nearly the same densities which are contained between two oscillating vertical planes has been calculated by the method of domain perturbation pivoted about the rest state. The analysis has been carried out through second order in the amplitude of the oscillation velocity. The existence of the shearing motion on the interface has been considered by incorporating the spatial dependence of the primary motion on the vertical coordinate as well as on the transverse coordinate. This has led to an enhancement of the normal stress effect and thus results in predicting a higher rise in the interface than that in the case when no shearing motion is assumed to exist on the interface.  相似文献   

16.
Computer simulations based on Discrete Element Method have been performed in order to investigate the influence of interparticle interactions on the kinetics of self-assembly and the mechanical strength of nanoparticle aggregates.Three different systems have been considered.In the first system the interaction between particles has been simulated using the JKR (Johnson,Kendall and Roberts) contact theory,while in the second and third systems the interaction between particles has been simulated using van der Waals and electrostatic forces respectively.In order to compare the mechanical behaviour of the three systems,the magnitude of the maximum attractive force between particles has been kept the same in all cases.However,the relationship between force and separation distance differs from case to case and thus,the range of the interparticle force.The results clearly indicate that as the range of the interparticle force increases,the self-assembly process is faster and the work required to produce the mechanical failure of the assemblies increases by more than one order of magnitude.  相似文献   

17.
From numerical and experimental investigations it has been recently established that convective heat transfer can be dramatically enhanced by the generation of longitudinal vortices in the flow. The phenomenological similarity between heat and mass transfer suggests that longitudinal vortices should increase also mass transfer. The mixing between two parallel streams of two components in a rectangular channel with and without a pair of rectangular winglets as vortex generators has been numerically investigated. The results show that one pair of vortex generators can increase the global mixing by more than 50 for laminar flow. This global mixing has been defined as the sum of the square of the differences of concentrations.  相似文献   

18.
Computer simulations based on Discrete Element Method have been performed in order to investigate the influence of interparticle interactions on the kinetics of self-assembly and the mechanical strength of nanoparticle aggregates. Three different systems have been considered. In the first system the interaction between particles has been simulated using the JKR (Johnson, Kendall and Roberts) contact theory, while in the second and third systems the interaction between particles has been simulated using van der Waals and electrostatic forces respectively. In order to compare the mechanical behaviour of the three systems, the magnitude of the maximum attractive force between particles has been kept the same in all cases. However, the relationship between force and separation distance differs from case to case and thus, the range of the interparticle force. The results clearly indicate that as the range of the interparticle force increases, the self-assembly process is faster and the work required to produce the mechanical failure of the assemblies increases by more than one order of magnitude.  相似文献   

19.
A mathematical model for slip-buckling has been proposed and its analytical solution has been found for the analysis of layered and geometrically perfect composite columns with inter-layer slip between the layers. The analytical study has been carried out to evaluate exact critical forces and to compare them to those in the literature. Particular emphasis has been placed on the influence of interface compliance on decreasing the bifurcation loads. For this purpose, a preliminary parametric study has been performed by which the influence of various material and geometric parameters on buckling forces have been investigated.  相似文献   

20.
A non-local continuum model including long-range forces between non-adjacent volume elements has been studied in this paper. The proposed continuum model has been obtained as limit case of two fully equivalent mechanical models: (i) A volume element model including contact forces between adjacent volumes as well as long-range interactions, distance decaying, between non-adjacent elements. (ii) A discrete point-spring model with local springs between adjacent points and non-local springs with distance-decaying stiffness connecting non-adjacent points. Under the assumption of fractional distance-decaying interactions between non-adjacent elements a fractional differential equation involving Marchaud-type fractional derivatives has been obtained for unbounded domains. It is shown that for unbounded domains the two mechanical models revert to Lazopoulos and Eringen model with fractional distance-decaying functions. It has also been shown that for a confined bar, the stress–strain relation is substantially different from that obtained simply using the truncated Marchaud derivatives since a double integral instead of convolution integral appears. Moreover, in the analysis of bounded domains, the governing equations turn out to an integro-differential equation including only the integral part of Marchaud fractional derivatives on finite interval. The mechanical boundary condition for the proposed model has been introduced consistently on the basis of mechanical considerations, and the constitutive law of the proposed continuum model has been reported by mathematical induction. Several numerical applications have been reported to show, verify and assess the concepts listed in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号