首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary The problem of two-dimensional steady laminar flow of a viscous incompressible and electrically conducting fluid through a channel with two equally porous walls in the presence of a transverse magnetic field has been extended to include all values of Hartmann number and small suction velocity at the walls. Expressions for the velocity components, the pressure and the wall friction in terms of the Hartmann number and the suction Reynolds number are given. It is found that the pressure drop in the major flow direction and the wall friction decrease with the increase in suction and increase with the increase in the strength of the magnetic field.  相似文献   

2.
毛洁  王彦利  王浩 《力学学报》2018,50(6):1387-1395
热核聚变反应堆液态金属包层应用中的一个重要问题是液态金属在导电管中流动和强磁场相互作用产生的额外的磁流体动力学压降.这种磁流体动力学压降远远大于普通水力学压降.美国阿贡国家实验室ALEX研究小组,对非均匀磁场下导电管中液态金属磁流体动力学效应进行了实验研究,其实验结果成为液态金属包层数值验证的标准模型之一.液态金属包层在应用中会受到不同方向的磁场作用,本文以ALEX的非均匀磁场下导电方管中液态金属管流实验中的一组参数为基础,保持哈特曼数、雷诺数和壁面电导率不变,采用三维直接数值模拟的方法,研究了外加磁场与侧壁之间的倾角对导电方管内液态金属流动的速度、电流和压降分布的影响.研究结果表明:沿流向相同横截面上的速度、电流以及压力分布均随磁场的倾斜而同向旋转.倾斜磁场均匀段,横截面上的高速区位于平行磁场方向的哈特曼层和平行层交叉位置,压力梯度随磁场倾角的增大先增大后减小.倾斜磁场递减段,在三维磁流体动力学效应作用下,横截面上的高速射流位置向垂直磁场方向偏移.磁场递减段的三维磁流体动力学压降随磁场倾角的增大而增大.随磁场倾斜,截面上的射流峰值逐渐减小,二次流增强,引发层流向湍流的转捩.   相似文献   

3.
Two models are presented for predicting magnetohydrodynamic pressure drop in two phase gas—liquid flows of conducting fluids for large values of Hartmann number. The first of these models treats the gas—liquid mixture as a single homogeneous pseudofluid with averaged mixture properties. The second model assumes that the flow pattern is one where the liquid is displaced to the duct walls as a liquid film and the gas flows in the central core. It is shown that the two models do not differ significantly in their predictions of overall pressure drop for vaporising two-phase flow of potassium. There is little experimental data available for testing the models but very satisfactory agreement is found between measurements of magnetic pressure drop of NaK—nitrogen mixtures at low quality and the predictions of both models.  相似文献   

4.
A novel approach of combined mathematical and computational models has been developed to investigate the oscillatory two-layered flow of blood through arterial stenosis in the presence of a transverse uniform magnetic field applied. Blood in the core region and plasma fluid in the peripheral layer region are assumed to obey the law of Newtonian fluid. An analytical solution is obtained for velocity profile and volumetric flow rate in the peripheral plasma region and also wall shear stress. Finite difference method is employed to solve the momentum equation for the core region. The numerical solutions for velocity, flow rate and flow resistance are computed. The effects of various parameters associated with the present flow problem such as radially variable viscosity, hematocrit, plasma layer thickness, magnetic field and pulsatile Reynolds number on the physiologically important flow characteristics namely velocity distribution, flow rate, wall shear stress and resistance to flow have been investigated. It is observed that the velocity increases with the increase of plasma layer thickness. An increase or a decrease in the velocity and wall shear stress against the increase in the value of magnetic parameter (Hartmann number) and hematocrit is dependent on the value of t. An increase in magnetic field leads to an increase in the flow resistance and it decreases with the increase in the plasma layer thickness and pulsatile Reynolds number. The information concerning the phase lag between the flow characteristics and how it is affected by the hematocrit, plasma layer thickness and Hartmann number has, for the first time, been added to the literature.  相似文献   

5.
A finite element method is given to obtain the numerical solution of the coupled equations in velocity and magnetic field for unsteady MHD flow through a pipe having arbitrarily conducting walls. Pipes of rectangular, circular and triangular sections have been taken for illustration. Computations have been carried out for different Hartmann numbers and wall conductivity at various time levels. It is found that if the wall conductivity increases, the flux through a section decreases. The same is the effect of increasing the Hartmann number. It is also observed that the steady state is approached at a faster rate for larger Hartmann numbers or larger wall conductivity. Selected graphs are given showing the behaviour of velocity, induced magnetic field and flux across a section.  相似文献   

6.
The flow characteristics of an unsteady axisymmetric two-dimensional (2D) blood flow in a diseased porous arterial segment with flexible walls are investigated. The arterial walls mimic the irregular constrictions whereas the lumen containing the thrombus, cholesterol, and fatty plaques represents the porous medium. The governing equations with appropriate initial and boundary conditions are solved numerically using MAC method. The discretization is done on staggered grid with non-uniform grid size and pressure-poisson equation is solved following SOR method. The pressure and velocity corrections are made cyclically until the steady state is achieved. It is observed that for decreasing permeability, flow is highly decelerated while pressure drop and wall shear stress increases. The separation zones and re-circulation regions are found for severe stenoses. Flow separation and re-circulation diminishes for decreasing permeability of the porous medium. Comparisons are provided with published experimental and numerical results.  相似文献   

7.
To investigate the combined influence of viscous dissipation, pressure work, Joule heating, arbitrary voltage ratio, unequal wall conductances and wall heat fluxes on the fully developed laminar MHD channel flow heat transfer, the exact solution of the energy equations for fluid and channel walls are derived assuming the Hartmann velocity profile. It is concluded that there can be a substantial difference, depending upon Hartmann number, electric field and Brinkman number, between the Nusselt number considering the wall conductance and that neglecting it. Representative results are presented in diagrams.  相似文献   

8.
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible,and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability,Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.  相似文献   

9.
The present investigation studies the peristaltic flow of the Jeffrey fluid through a tube of finite length. The fluid is electrically conducting in the presence of an applied magnetic field. Analysis is carried out under the assumption of long wavelength and low Reynolds number approximations. Expressions of the pressure gradient, volume flow rate, average volume flow rate, and local wall shear stress are obtained. The effects of relaxation time, retardation time, Hartman number on pressure, local wall shear stress, and mechanical efficiency of peristaltic pump are studied. The reflux phenomenon is also investigated. The case of propagation of a non-integral number of waves along the tube walls, which are inherent characteristics of finite length vessels, is also examined.  相似文献   

10.
ABSTRACT

In this paper, effects of two wires magnetic field on heat transfer and biomagnetic fluid flow in an aneurysm have been investigated using the ferrohydrodynamics model. Using the finite volume method and the SIMPLE algorithm, the governing equations have been discretised. Simulations have been carried out for both conditions of wires in the same and opposite directions and different magnetic numbers of 41 and 82. Results show that the magnetic field causes a decrease in heat transfer of blood flow towards the walls. Moreover, major energy loss or pressure drop, arising from mean wall shear stress, decreases but local or minor energy loss, arising from aneurysm vortexes, increases. Furthermore, risk factors of aneurysm rupture is decreased under the effect of the magnetic field. The effective contact surface between drug-coated magnetic nanoparticles and the aneurysm tissue may increase and residence time of drug on the cells of the region would decrease.  相似文献   

11.
Numerical computations and experiments were carried out for a buoyant flow of liquid metal (mercury in the experiments) in a long vertical enclosure of square cross-section, in the presence of a uniform horizontal magnetic field. A strong emphasis is put on the case of a magnetic field perpendicular to the applied temperature gradient for two reasons: (1) the MHD damping is smaller than with any other orientation, and (2) the quasi-two-dimensionality of the flow in this case yields a quite efficient velocity measurement technique. The enclosure is heated by a thermally controlled flow of water from one of the vertical walls and cooled by a similar technique from the facing wall. Those two walls are good thermal conductors (thick copper plates in the experiments), whereas the four other walls are thermally insulating. All walls are electrically insulated from the fluid. In this paper, as well as in the companion paper by Tagawa et al. (Eur. J. Mech. B Fluids 21 (4) (2002) 383–398), we model analytically the Hartmann layers present along the walls perpendicular to the magnetic field. This modeling, which yields boundary conditions for the core flow without any meshing of the thin layers, is quite accurate when Hartmann layers are stable. The numerical results are in fairly good agreement with the experimental data. They namely reveal how the heat flux and the fluid flow organization depend on the magnetic field.  相似文献   

12.
We present numerical simulation results of the quasi-static magnetohydrodynamic (MHD) flow in a toroidal duct of square cross-section with insulating Hartmann walls and conducting side walls. Both laminar and turbulent flows are considered. In the case of steady flows, we present a comprehensive analysis of the secondary flow. It consists of two counter-rotating vortex cells, with additional side wall vortices emerging at sufficiently high Hartmann number. Our results agree well with existing asymptotic analysis. In the turbulent regime, we make a comparison between hydrodynamic and MHD flows. We find that the curvature induces an asymmetry between the inner and outer side of the duct, with higher turbulence intensities occurring at the outer side wall. The magnetic field is seen to stabilize the flow so that only the outer side layer remains unstable. These features are illustrated both by a study of statistically averaged quantities and by a visualization of (instantaneous) coherent vortices.  相似文献   

13.
The yield stresses of electro-rheological (ER) and magneto-rheological (MR) suspensions increase by orders of magnitude when electric or magnetic fields are applied across them. In the absence of the field, the materials are essentially Newtonian fluids. When ER or MR materials flow through thin laminar ducts, the effect of the finite yield stress concentrates the material deformation gradients in the immediate vicinity of the duct walls. High shear rates in this region introduce drag and lift forces on the suspended particles, the net effect of which moves the particles away from the walls. Electro- or magneto-static image forces at the walls oppose this lift. The ensuing local changes in the particulate volume fraction gives rise to a local inhomogeneity in material properties adjacent to the walls.Four models for the material property inhomogeneities are presented in this paper. Three of these models admit analytical expressions for the relationship between pressure gradient and volumetric flow rate, but presume a piecewise constant particle concentration. The fourth model presumes a smooth relationship between the volume fraction and the shear rate, but requires a numerical solution. Results are presented in terms of the ratio of pressure gradients that can be produced by applying and removing the field.Experimental data collected for a variety of quasi-steady ER flows shows that the analytical solution corresponding to a flow of uniform particle concentration provides an upper bound to the pressure gradients. Each of the four models for inhomogeneous flow provides a lower bound over a sub-domain of the flow conditions. By combining these models heuristically, a single expression for the lower bound on the pressure gradients of ER and MR flows is presented.  相似文献   

14.
A micropolar model for blood simulating magnetohydrodynamic flow through a horizontally nonsymmetric but vertically symmetric artery with a mild stenosis is presented. To estimate the effect of the stenosis shape, a suitable geometry has been considered such that the horizontal shape of the stenosis can easily be changed just by varying a parameter referred to as the shape parameter. Flow parameters, such as velocity, the resistance to flow (the resistance impedance), the wall shear stress distribution in the stenotic region, and its magnitude at the maximum height of the stenosis (stenosis throat), have been computed for different shape parameters, the Hartmann number and the Hall parameter. This shows that the resistance to flow decreases with the increasing values of the parameter determining the stenosis shape and the Hail parameter, while it increases with the increasing Hartmann number. The wall shear stress and the shearing stress on the wall at the maximum height of the stenosis possess an inverse characteristic to the resistance to flow with respect to any given value of the Hartmann number and the Hall parameter. Finally, the effect of the Hartmann number and the Hall parameter on the horizontal velocity is examined.  相似文献   

15.
动脉局部狭窄时脉动流的有限元分析   总被引:4,自引:0,他引:4  
罗小玉  匡震邦 《力学学报》1992,24(3):320-328
本文利用有限元方法研究动脉局部狭窄下的脉动流流场,重点考查在50%与80%面积狭窄下的速度分布、压力分布、壁面剪应力分布及流动分离情况。几何形状及边界条件均模拟相应的脉动流实验模型。采用测得的随时间变化的速度分布作为入口端条件,并利用罚函数和逆风格式等计算技巧得出了光滑的与实验基本相符的速度、压力波形。本文讨论了不同狭窄下速度、压力、壁面剪应力的分布形态,给出了脉动流中狭窄处局部流动分离的间歇性变化规律,并结合实验与临床应用进行了讨论。  相似文献   

16.
This paper documents the numerical investigation of the effects of non-uniform magnetic fields, i.e. magnetic-ribs, on a liquid–metal flowing through a two-dimensional channel. The magnetic ribs are physically represented by electric currents flowing underneath the channel walls. The Lorentz forces generated by the magnetic ribs alter the flow field and, as consequence, the convective heat transfer and wall shear stress. The dimensionless numbers characterizing a liquid–metal flow through a magnetic field are the Reynolds (Re) and the Stuart (N) numbers. The latter provides the ratio of the Lorentz forces and the inertial forces. A liquid–metal flow in a laminar regime has been simulated in the absence of a magnetic field (ReH = 1000, N = 0), and in two different magnetic ribs configurations for increasing values of the Stuart number (ReH = 1000, N equal to 0.5, 2 and 5). The analysis of the resulting velocity, temperature and force fields has revealed the heat transport phenomena governing these magneto-hydro-dynamic flows. Moreover, it has been noticed that, by increasing the strength of the magnetic field, the convective heat transfer increases with local Nusselt numbers that are as much 27.0% larger if compared to those evaluated in the absence of the magnetic field. Such a convective heat transfer enhancement has been obtained at expenses of the pressure drop, which increases more than twice with respect to the non-magnetic case.  相似文献   

17.
The main goal of the present study is to show the procedure, application and main features of the hybrid numerical/analytical approach known as GITT (Generalized Integral Transform Technique) by solving a magnetohydrodynamic channel flow with heat transfer, sustained by a pressure gradient and subjected to a uniformly applied and undisturbed transversal magnetic field. Although not the primary objective, application of this novel method provides a critical review of previously published numerical results on developing channel flows with uniform or non-uniform velocity and temperature profiles at the channel inlet. This is bounded by non-conducting horizontal walls at constant temperature and lateral walls that are electrically perfect conductors (open or short-circuited). Transport properties, namely, fluid viscosity, thermal and electrical conductivities, are taken as either constant or thermally-dependent, exponential-type, functions. Due to the hybrid numerical-analytical nature of the integral transform approach, benchmark results for velocity and temperature fields and the main correlated potentials are produced as a function of the primary dimensionless governing parameters, such as Hartmann, Prandtl and Eckert numbers, as well as the electrical parameter, for typical situations.  相似文献   

18.
Steady, laminar, natural-convection flow in the presence of a magnetic field in an inclined square enclosure differentially heated along the bottom and left vertical walls while the other walls are kept isothermal was considered. The governing equations were solved numerically for the stream function, vorticity and temperature ratio using the differential quadrature method for various Grashof and Hartmann numbers, inclination angle of the enclosure and direction of the magnetic field. The orientation of the enclosure changes the temperature gradient inside and has a significant effect on the flow pattern. Magnetic field suppresses the convective flow and its direction also influences the flow pattern, causing the appearance of inner loops and multiple eddies. The surface heat flux along the bottom wall is slightly increased by clockwise inclination and reduced by half by the counterclockwise inclination. The surface heat flux along the upper portion of the left side wall is reversed by the rise of warmer fluids due to the convection currents for no inclination and clockwise inclination of the enclosure.  相似文献   

19.
We present an exact analytical representation of the unsteady thermo-fluid dynamic field arising in a two-dimensional channel with parallel walls for a fluid with constant properties. We assume that the axial pressure gradient is an arbitrary function of time that can be expanded in Taylor series; a particular case is the impulsive motion generated by a sudden jump to a constant value; for large time values the flow reaches the well-known steady Poiseuille solution. As boundary conditions for the dynamic field we consider fixed and moving walls (unsteady Couette flow). The assigned temperature on the walls can be an arbitrary function of time. We also consider the coupling of the energy and momentum equations (i.e. Eckert number different from zero). The solution is obtained by series with simple expressions of the coefficients in terms of the error functions. The fundamental physical parameters, such as shear stress, mass flow and heat flux at the wall are obtained in explicit analytical form and discussed by means of their diagrams.  相似文献   

20.
In this paper we study a turbulent pipe flow of a weakly electrical conducting fluid subjected to a homogeneous magnetic field which is applied perpendicular to the flow. This configuration forms the basis of a so-called electromagnetic induction flow meter. When the Hartmann number is small so that modification of flow by the Lorenz force can be neglected, the influence of the magnetic field results only in a spatially and temporally varying electric potential. The magnitude of the potential difference across the pipe is then proportional to the flow rate and this constitutes the principle of the flow meter. In this study the flow and electric potential are computed with help of a numerical flow simulation called Large-Eddy Simulation (LES) to which we have added an equation for the electrical potential. The results of the LES have been compared with experiments in which the electric potential is measured as a function of time at several positions on the circumference of the pipe. Both the experimental and numerical results for the mean potential at the pipe wall agree very well with an exact solution that can be obtained in this particular case of a homogeneous magnetic field. Furthermore, it is found that fluctuations in the electric potential due to the turbulence, are small compared to the velocity fluctuations. Based on the results we conclude that electrical-magnetic effects in pipe flow can be accurately computed with LES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号