首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Blood flow through a catheterized artery is analyzed, assuming the flow is steady and blood is treated as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the plasma in the peripheral region as a Newtonian fluid. The expressions for velocity, flow rate, wall shear stress and frictional resistance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio and peripheral layer thickness are discussed. It is noticed that the velocity and flow rate decrease while the wall shear stress and resistance to flow increase when the yield stress or the catheter radius ratio increases while all the other parameters were held fixed. It is found that the velocity and flow rate increase while the wall shear stress and frictional resistance decrease with the increase of the peripheral layer thickness. The estimates of the increase in the frictional resistance are significantly very small for the present two-fluid model than those of the single-fluid Casson model.  相似文献   

2.
This work focuses on the comparison between Newtonian and non-Newtonian blood flows through a bileaflet mechanical heart valve in the aortic root. The blood, in fact, is a concentrated suspension of cells, mainly red blood cells, in a Newtonian matrix, the plasma, and consequently its overall behavior is that of a non-Newtonian fluid owing to the action of the cells’ membrane on the fluid part. The common practice, however, assumes the blood in large vessels as a Newtonian fluid since the shear rate is generally high and the effective viscosity becomes independent of the former. In this paper, we show that this is not always the case even in the aorta, the largest artery of the systemic circulation, owing to the pulsatile and transitional nature of the flow. Unexpectedly, for most of the pulsating cycle and in a large part of the fluid volume, the shear rate is smaller than the threshold level for the blood to display a constant effective viscosity and its shear thinning character might affect the system dynamics. A direct inspection of the various flow features has shown that the valve dynamics, the transvalvular pressure drop and the large-scale features of the flow are very similar for the Newtonian and non-Newtonian fluid models. On the other hand, the mechanical damage of the red blood cells (hemolysis), induced by the altered stress values in the flow, is larger for the non-Newtonian fluid model than for the Newtonian one.  相似文献   

3.
In this paper, we discussed a mathematical model for two-layered non-Newtonian blood flow through porous constricted blood vessels. The core region of blood flow contains the suspension of erythrocytes as non-Newtonian Casson fluid and the peripheral region contains the plasma flow as Newtonian fluid. The wall of porous constricted blood vessel configured as thin transition Brinkman layer over layered by Darcy region. The boundary of fluid layer is defined as stress jump condition of Ocha-Tapiya and Beavers–Joseph. In this paper, we obtained an analytic expression for velocity, flow rate, wall shear stress. The effect of permeability, plasma layer thickness, yield stress and shape of the constriction on velocity in core & peripheral region, wall shear stress and flow rate is discussed graphically. This is found throughout the discussion that permeability and plasma layer thickness have accountable effect on various flow parameters which gives an important observation for diseased blood vessels.  相似文献   

4.
Flow dynamics plays an important role in the pathogenesis and treatment of cerebral aneurysms. The temporal and spatial variations of wall shear stress in the aneurysm are hypothesized to be correlated with its growth and rupture. In addition, the assessment of the velocity field in the aneurysm dome and neck is important for the correct placement of endovascular coils. This work describes the flow dynamics in a patient‐specific model of carotid artery with a saccular aneurysm under Newtonian and non‐Newtonian fluid assumptions. The model was obtained from three‐dimensional rotational angiography image data and blood flow dynamics was studied under physiologically representative waveform of inflow. The three‐dimensional continuity and momentum equations for incompressible and unsteady laminar flow were solved with a commercial software using non‐structured fine grid with 283 115 tetrahedral elements. The intra‐aneurysmal flow shows complex vortex structure that change during one pulsatile cycle. The effect of the non‐Newtonian properties of blood on the wall shear stress was important only in the arterial regions with high velocity gradients, on the aneurysmal wall the predictions with the Newtonian and non‐Newtonian blood models were similar. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
In the present paper an unsteady thermal flow of non-Newtonian fluid is investigated which is of the fiow into axisymmetric mould cavity. In the second part an unsteady thermal flow of upper-convected Maxwell fluid is studied, For the flow into mould cavity the constitutive equation of power-law fluid is used as a rheological model of polymer fluid. The apparent viscosity is considered as a function of shear rate and temperature. A characteristic viscosity is introduced in order to avoid the nonlinearity due to the temperature dependence of the apparent viscosity. As the viscosity of the fluid is relatively high the flow of the thermal fluid can be considered as a flow of fully developed velocity field. However, the temperature field of the fluid fiow is considered as an unsteady one. The governing equations are constitutive equation, momentum equation of steady flow and energy conservation equation of non-steady form. The present system of equations has been solved numerically by the splitting differen  相似文献   

6.
以颈动脉分岔血管为例,采用数值方法研究了窦部环缩狭窄之后的流场分布情况,并和正 常血管情况下的流场分布进行了比较. 结果表明,采用环缩方式给颈动脉分岔血管施加对称 的狭窄改变了颈动脉窦内流场,特别是壁面剪应力的分布规律. 低剪应力区出现在狭窄段之 后的窦内,并且沿整个周向均匀分布. 根据低剪应力和动脉粥样硬化的关系,指出: 若人为地给颈动脉窦内施加对称狭窄,则脂质沉积将在狭窄下游的窦内沿周向轴对称 发展. 为了更真实地反映颈动脉窦内的狭窄,建议根据动脉血管中的实际狭窄情况,采用非 对称的狭窄分布模式.  相似文献   

7.
Nomenclature  τ  wallshearstressγshearrateτy yieldstressηc Cassonviscosityktheconsistencyindexnnon_Newtonianindexτp shearstressofthepthelementωangularvelocityRvessel’sradiusCwavespeedM  magneticparameter (Hartmannnumber)u,w velocitycomponentinther_andz_directions,respectivelyP  pressureα  unsteadinessparameter k , R meanparametersTp relaxationtimeofthepthelementρ densityIntroductionTheimportancetoatherogenesisofarterialflowphenomenasuchasflowseparation ,recirculationands…  相似文献   

8.
A steady boundary layer flow of a non-Newtonian Casson fluid over a power-law stretching sheet is investigated. A self-similar form of the governing equation is obtained, and numerical solutions are found for various values of the governing parameters. The solutions depend on the fluid material parameter. Dual solutions are obtained for some particular range of these parameters. The fluid velocity is found to decrease as the power-law stretching parameter β in the rheological Casson equation increases. At large values of β, the skin friction coefficient and the velocity profile across the boundary layer for the Casson fluid tend to those for the Newtonian fluid.  相似文献   

9.
This paper presents a numerical study for the unsteady flow of a magnetohydrodynamic (MHD) Sisko fluid in annular pipe. The fluid is assumed to be electrically conducting in the presence of a uniform magnetic field. Based on the constitutive relationship of a Sisko fluid, the non‐linear equation governing the flow is first modelled and then numerically solved. The effects of the various parameters especially the power index n, the material parameter of the non‐Newtonian fluid b and the magnetic parameter B on the flow characteristics are explored numerically and presented through several graphs. Moreover, the shear‐thinning and shear‐thickening characteristics of the non‐Newtonian Sisko fluid are investigated and a comparison is also made with the Newtonian fluid. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
Non-Newtonian effects in a channel with moving wall indentations are assessed numerically by a finite volume method for solving the unsteady incompressible Navier-Stokes equations and using a power-law model exhibiting shear thinning viscosity and Casson's model as the constitutive equations for the non-Newtonian fluid. The computations show that for a non-Newtonian fluid, there are differences in the velocity profiles and in the structure and size of the reversed flow regions as compared with the corresponding Newtonian fluid. The comparison of non-Newtonian and Newtonian wall shear stress reveals a slight decrease in the magnitude on the average for the non-Newtonian case, eventually resulting in the strength of the “wave train” being slightly weaker than those corresponding to a Newtonian fluid.  相似文献   

11.
The pulsatile flow of blood through a catheterized artery is analyzed, assuming the blood as a two-fluid model with the suspension of all the erythrocytes in the core region as a Casson fluid and the peripheral region of plasma as a Newtonian fluid. The resulting non-linear implicit system of partial differential equations is solved using perturbation method. The expressions for shear stress, velocity, flow rate, wall shear stress and longitudinal impedance are obtained. The variations of these flow quantities with yield stress, catheter radius ratio, amplitude, pulsatile Reynolds number ratio and peripheral layer thickness are discussed. It is observed that the velocity distribution and flow rate decrease, while, the wall shear, width of the plug flow region and longitudinal impedance increase when the yield stress increases. It is also found that the velocity increases, but, the longitudinal impedance decreases when the thickness of the peripheral layer increases. The wall shear stress decreases non-linearly, while, the longitudinal impedance increases non-linearly when the catheter radius ratio increases. The estimates of the increase in the longitudinal impedance are considerably lower for the present two-fluid model than those of the single-fluid model.  相似文献   

12.
Arterial bifurcations are places where blood flow may be disturbed and slow recirculation flow may occur. To reveal the correlation between local oxygen transfer and atherogenesis, a finite element method was employed to simulate the blood flow and the oxygen transfer in the human carotid artery bifurcation. Under steady-state flow conditions, the numerical simulation demonstrated a variation in local oxygen transfer at the bifurcation, showing that the convective condition in the disturbed flow region may produce uneven local oxygen transfer at the blood/wall interface. The disturbed blood flow with formation of slow eddies in the carotid sinus resulted in a depression in oxygen supply to the arterial wall at the entry of the sinus, which in turn may lead to an atherogenic response of the arterial wall, and contribute to the development of atherosclerotic stenosis there. The project supported by the National Natural Science Research Council of China (10632010, 10572017, 30670517).  相似文献   

13.
The effects of different blood rheological models are investigated numerically utilizing two three‐ dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite‐volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi‐block computations, which are useful in order to cope with the two‐block grid structure of the current computational domain. Three non‐Newtonian models are employed, namely the Casson, Power‐Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two‐phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non‐Newtonian fluid and furthermore the Power‐Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Single phase non-Newtonian microporous flow combined with the electroviscous effect is investigated in the pore-scale under conditions of various rheological properties and electrokinetic parameters. The lattice Boltzmann method is employed to solve both the electric potential field and flow velocity field. The simulation of commonly used power-law non-Newtonian flow shows that the electroviscous effect on the flow depends on both the fluid rheological behavior and pore surface area ratio significantly. For the shear thinning fluid with power-law exponent n < 1, the fluid viscosity near the wall is smaller and the electrovicous effect plays a more important role compared to the Newtonian fluid and shear thickening fluid. The high pore surface area ratio in the porous structure increases the electroviscous force and the induced flow resistance becomes important even to the flow of Newtonian and shear thickening fluids.  相似文献   

15.
Newtonian fluid flow in two- and three-dimensional cavities with a moving wall has been studied extensively in a number of previous works. However, relatively a fewer number of studies have considered the motion of non-Newtonian fluids such as shear thinning and shear thickening power law fluids. In this paper, we have simulated the three-dimensional, non-Newtonian flow of a power law fluid in a cubic cavity driven by shear from the top wall. We have used an in-house developed fractional step code, implemented on a Graphics Processor Unit. Three Reynolds numbers have been studied with power law index set to 0.5, 1.0 and 1.5. The flow patterns, viscosity distributions and velocity profiles are presented for Reynolds numbers of 100, 400 and 1000. All three Reynolds numbers are found to yield steady state flows. Tabulated values of velocity are given for the nine cases studied, including the Newtonian cases.  相似文献   

16.
韩式方 《力学学报》1993,25(2):213-217
提出“准衰退记忆”新概念,发展了非牛顿流体扰动本构理论,并研究了粘弹流体拉伸流动的不稳定性规律  相似文献   

17.
 The apparent viscosities of purely viscous non-Newtonian fluids are shear rate dependent. At low shear rates, many of such fluids exhibit Newtonian behaviour while at higher shear rates non-Newtonian, power law characteristics exist. Between these two ranges, the fluid's viscous properties are neither Newtonian or power law. Utilizing an apparent viscosity constitutive equation called the “Modified Power Law” which accounts for the above behavior, solutions have been obtained for forced convection flows. A shear rate similarity parameter is identified which specifies both the shear rate range for a given fluid and set of operating conditions and the appropriate solution for that range. The results of numerical solutions for the friction factor–Reynolds number product and for the Nusselt number as a function of a dimensionless shear rate parameter have been presented for forced fully developed laminer duct flows of different cross-sections with modified power law fluids. Experimental data is also presented showing the suitability of the “Modified Power Law” constitutive equation to represent the apparent viscosity of various polymer solutions. Received on 21 August 2000  相似文献   

18.
为探讨口腔环境下流体的流动行为,采用数值方法与流变试验深入研究舌/上颚微间隙下流体流量的影响因素. 建立舌/上颚微间隙的简化模型及Reynolds方程,通过数值方法获取微间隙下流量变化;在DHR-2流变仪上研究非牛顿流体的黏度与剪切率的变化,探讨牛顿流体和非牛顿流体的流量影响. 结果表明:牛顿流体流量平方的倒数同载荷和黏度比值和时间均呈线性函数关系;所制备的非牛顿流体近似为幂律流体,其黏度随脂肪含量的增加而增大,而非牛顿流体流量率先高于后低于等效牛顿流体,其研究结果将为特定人群功能产品的研发提供技术支持.   相似文献   

19.
A continuum constitutive theory of corotational derivative type is developed for the anisotropic viscoelastic fluid–liquid crystalline (LC) polymers. A concept of anisotropic viscoelastic simple fluid is introduced. The stress tensor instead of the velocity gradient tensor D in the classic Leslie–Ericksen theory is described by the first Rivlin–Ericksen tensor A and a spin tensor W measured with respect to a co-rotational coordinate system. A model LCP-H on this theory is proposed and the characteristic unsymmetric behaviour of the shear stress is predicted for LC polymer liquids. Two shear stresses thereby in shear flow of LC polymer liquids lead to internal vortex flow and rotational flow. The conclusion could be of theoretical meaning for the modern liquid crystalline display technology. By using the equation, extrusion–extensional flows of the fluid are studied for fiber spinning of LC polymer melts, the elongational viscosity vs. extension rate with variation of shear rate is given in figures. A considerable increase of elongational viscosity and bifurcation behaviour are observed when the orientational motion of the director vector is considered. The contraction of extrudate of LC polymer melts is caused by the high elongational viscosity. For anisotropic viscoelastic fluids, an important advance has been made in the investigation on the constitutive equation on the basis of which a series of new anisotropic non-Newtonian fluid problems can be addressed. The project supported by the National Natural Science Foundation of China (10372100, 19832050) (Key project). The English text was polished by Yunming Chen.  相似文献   

20.
The governing non-linear high-order, sixth-order in space and third-order in time, differential equation is constructed for the unsteady flow of an incompressible conducting fourth-grade fluid in a semi-infinite domain. The unsteady flow is induced by a periodically oscillating two-dimensional infinite porous plate with suction/blowing, located in a uniform magnetic field. It is shown that by augmenting additional boundary conditions at infinity based on asymptotic structures and transforming the semi-infinite physical space to a bounded computational domain by means of a coordinate transformation, it is possible to obtain numerical solutions of the non-linear magnetohydrodynamic equation. In particular, due to the unsymmetry of the boundary conditions, in numerical simulations non-central difference schemes are constructed and employed to approximate the emerging higher-order spatial derivatives. Effects of material parameters, uniform suction or blowing past the porous plate, exerted magnetic field and oscillation frequency of the plate on the time-dependent flow, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviour of the fourth-grade non-Newtonian fluid is also compared with those of the Newtonian fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号