首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Large‐eddy simulation (LES) and Reynolds‐averaged Navier–Stokes simulation (RANS) with different turbulence models (including the standard k?ε, the standard k?ω, the shear stress transport k?ω (SST k?ω), and Spalart–Allmaras (S–A) turbulence models) have been employed to compute the turbulent flow of a two‐dimensional turbulent boundary layer over an unswept bump. The predictions of the simulations were compared with available experimental measurements in the literature. The comparisons of the LES and the SST k?ω model including the mean flow and turbulence stresses are in satisfied agreements with the available measurements. Although the flow experiences a strong adverse pressure gradient along the rear surface, the boundary layer is unique in that intermittent detachment occurring near the wall. The numerical results indicate that the boundary layer is not followed by mean‐flow separation or incipient separation as shown from the numerical results. The resolved turbulent shear stress is in a reasonable agreement with the experimental data, though the computational result of LES shows that its peak is overpredicted near the trailing edge of the bump, while the other used turbulence models, except the standard k?ε, underpredicts it. Analysis of the numerical results from LES confirms the experimental data, in which the existence of internal layers over the bump surface upstream of the summit and along the downstream flat plate. It also demonstrates that the quasi‐step increase in skin friction is due to perturbations in pressure gradient. The surface curvature enhances the near‐wall shear production of turbulent stresses, and is responsible for the formation of the internal layers. The aim of the present work is to examine the response and prediction capability of LES with the dynamic eddy viscosity model as a sub‐grid scale to the complex turbulence structure with the presence of streamline curvature generated by a bumpy surface. Aiming to reduce the computational costs with focus on the mean behavior of the non‐equilibrium turbulent boundary layer of flow over the bump surface, the present investigation also explains the best capability of one of the used RANS turbulence models to capture the driving mechanism for the surprisingly rapid return to equilibrium over the trailing flat plate found in the measurements. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
Analysis and interpretation of instantaneous turbulent velocity fields   总被引:3,自引:0,他引:3  
Methods of analyzing and interpreting velocity-field data (both two- and three-dimensional) to understand the kinematics, dynamics, and scales of turbulence are discussed. Reynolds decomposition and vorticity are traditionally used; however, several other methods, including Galilean (constant convection velocity) and LES decompositions (low-pass filtering), in conjunction with critical-point analysis of the local velocity gradient tensor, reveal more about the structure of turbulence. Once the small-scale structures have been identified, it is necessary to assess their importance to the overall dynamics of the turbulence by visualizing the motions they induce and the stresses they impose both on other small-scale vortices and on the larger-scale field.  相似文献   

3.
The flows past a circular cylinder at Reynolds number 3900 are simulated using large-eddy simulation(LES) and the far-field sound is calculated from the LES results. A low dissipation energy-conserving finite volume scheme is used to discretize the incompressible Navier–Stokes equations. The dynamic global coefficient version of the Vreman's subgrid scale(SGS) model is used to compute the sub-grid stresses. Curle's integral of Lighthill's acoustic analogy is used to extract the sound radiated from the cylinder. The profiles of mean velocity and turbulent fluctuations obtained are consistent with the previous experimental and computational results. The sound radiation at far field exhibits the characteristic of a dipole and directivity. The sound spectra display the-5/3 power law. It is shown that Vreman's SGS model in company with dynamic procedure is suitable for LES of turbulence generated noise.  相似文献   

4.
Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.For some research studies in small domains, Δ is made much smaller than δ, and LES content is generated intentionally. However for natural DES applications in useful domains, it is preferable to over-ride the DES limiter and maintain RANS behavior in boundary layers, independent of Δ relative to δ. For this purpose, a new version of the technique – referred to as DDES, for Delayed DES – is presented which is based on a simple modification to DES97, similar to one proposed by Menter and Kuntz for the shear–stress transport (SST) model, but applicable to other models. Tests in boundary layers, on a single and a multi-element airfoil, a cylinder, and a backward-facing step demonstrate that RANS function is indeed maintained in thick boundary layers, without preventing LES function after massive separation. The new formulation better fulfills the intent of DES. Two other issues are discussed: the use of DES as a wall model in LES of attached flows, in which the known log-layer mismatch is not resolved by DDES; and a correction that is helpful at low cell Reynolds numbers.  相似文献   

5.
The viscosity plays an important role, and a multiphase solver is necessary to numerically simulate the oil spilling from a damaged double hull tank (DHT). However, it is uncertain whether turbulence modelling is necessary, which turbulence model is suitable; and what the role of compressibility of the fluids is. This paper presents experimental and numerical investigations to address these issues for various cases representing different scenarios of the oil spilling, including grounding and collision. In the numerical investigations, various approaches to model the turbulence, including the large eddy simulation (LES), direct numerical simulation and the Reynolds average Navier–Stokes equation (RANS) with different turbulence models, are employed. Based on the investigations, it is suggested that the effective Reynolds numbers corresponding to both oil outflow and water inflow shall be considered when classifying the significance of the turbulence and selecting the appropriate turbulence models. This is confirmed by new lab tests considering the axial offset between the internal and the external holes on two hulls of the DHT. The investigations conclude for numerically simulating oil spilling from a damaged DHT that when the effective Re is smaller the RANS approaches should not be used and LES modelling should be employed; while when the effective Reynolds numbers is large, the RANS models may be used as they can give similar results to LES in terms of the height of the mixture in the ballast tank and discharge but costing much less CPU time. The investigation on the role of the compressibility of the fluid reveals that the compressibility of the fluid may be considerable in a small temporal‐spatial scale but plays an insignificant role on macroscopic process of the oil spilling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

6.
A review of existing basic turbulence modeling approaches reveals the need for the development of unified turbulence models which can be used continuously as filter density function (FDF) or probability density function (PDF) methods, large eddy simulation (LES) or Reynolds-averaged Navier–Stokes (RANS) methods. It is then shown that such unified stochastic and deterministic turbulence models can be constructed by explaining the dependence of the characteristic time scale of velocity fluctuations on the scale considered. The unified stochastic model obtained generalizes usually applied FDF and PDF models. The unified deterministic turbulence model that is implied by the stochastic model recovers and extends well-known linear and nonlinear LES and RANS models for the subgrid-scale and Reynolds stress tensor.   相似文献   

7.
In the current work, we present the development and application of an embedded large-eddy simulation (LES) - Reynolds-averaged Navier Stokes (RANS) solver. The novelty of the present work lies in fully embedding the LES region inside a global RANS region through an explicit coupling at the arbitrary mesh interfaces, exchanging flow and turbulence quantities. In particular, a digital filter method (DFM) extracting mean flow, turbulent kinetic energy and Reynolds stress profiles from the RANS region is used to provide meaningful turbulent fluctuations to the LES region. The framework is developed in the open-source computational fluid dynamics software OpenFOAM. The embedding approach is developed and validated by simulating a spatially developing turbulent channel flow. Thereafter, flow over a surface mounted spanwise-periodic vertical fence is simulated to demonstrate the importance of the DFM and the effect of the location of the RANS-LES interface. Mean and second-order statistics are compared with direct numerical simulation (DNS) data from the literature. Results indicate that feeding synthetic turbulence at the LES interface is essential to achieve good agreement for the mean flow quantities. However, in order to obtain a good match for the Reynolds stresses, the LES interface needs to be placed sufficiently far upstream, which in the present case was six spoiler heights before the fence. Further, a realistic spoiler configuration with finite-width in the spanwise direction and inclined at 30 degrees was simulated using the embedding approach. As opposed to the vertical fence case this is a genuinely (statistically) three-dimensional case and a very good match with mean and second-order statistics was obtained with the experimental data. Finally, in order to test the present solver for high sub-sonic speed flows the flow over an open cavity was simulated. A good match with reference data is obtained for mean and turbulence profile comparisons. Tones in the pressure spectra were predicted reasonably well and an overall sound pressure level with a maximum deviation of 2.6 d B was obtained with the present solver when compared with the experimental data.  相似文献   

8.
This paper presents results of a large eddy simulation (LES) combined with Lagrangian particle tracking and a point-force approximation for the feedback effect of particles on the downward turbulent gaseous flow in a vertical channel. The LES predictions are compared with the results obtained by direct numerical simulation (DNS) of a finer computational mesh. A parametric study is conducted for particles with two response times in simulations with and without streamwise gravitational settling and elastic, binary interparticle collisions. It is shown that the classical and the dynamic Smagorinsky turbulence models adequately predict the particle-induced changes in the mean streamwise velocity and the Reynolds stresses of the carrier phase for the range of parameters studied. However, the largest discrepancies between the LES and DNS results are found in the cases of particle-laden flows. Conditional sampling of the instantaneous resolved flow fields indicates that the mechanisms by which particles directly oppose the production of momentum and vorticity of the organized fluid motions are also observed in the LES results. However, the geometric features of the near-wall quasistreamwise vortices are overestimated by the use of both turbulence models compared to the DNS predictions.  相似文献   

9.
将大涡模拟(LES)和无网格的移动粒子半隐式法(MPS)相结合, 以求解湍流中的自由表面问题. 对N-S方程进行滤波计算可得到大涡模拟的控制方程, 大涡模拟的控制方程相对于以往的移动粒子半隐式法而言仅多出雷诺应力项, 通过亚粒子应力(sub-particle-scale,SPS)模型并引入Smagorinsky涡黏模型将雷诺应力模型化, 可实现移动粒子半隐式法的大涡模拟. 将MPS-LES应用至具有大变形自由表面的共振晃荡中, 其模拟结果同实验及其他数值模拟结果都相当接近.   相似文献   

10.
Large Eddy Simulations (LES) are carried out to investigate on the mean flow in turbulent channel flows over irregular rough surfaces. Here the attention is focused to selectively investigate on the effect induced by crests or cavities of the roughness. The irregular shape is generated through the super-imposition of sinusoidal functions having random amplitude and four different wave-lengths. The irregular roughness profile is reproduced along the spanwise direction in order to obtain a 2D rough shape. The analysis of the mean velocity profiles shows that roughness crests induce higher effect in the outer-region whereas roughness cavities cause the highest effects in the inner-region with a reduced effect in the external region. The numerical simulations have been carried out at friction Reynolds number Reτ=395. Similar results have been found for the higher order statistics: turbulence intensities or shear stresses. The analysis of the Reynolds stress anisotropy tensor confirms the existence of specific roles of cavities and crests in the turbulence modulation.  相似文献   

11.
马威  方乐  邵亮  陆利蓬 《力学学报》2011,43(2):267-276
针对大涡模拟, 首先利用 EDQNM 能谱和传输谱理论, 在3种不同的过滤器下分别计算可解尺度各向同性湍流的二阶、三阶结构函数标度律, 并通过速度差扭率验证了可解尺度湍流的 ESS 理论. 研究了该可解尺度湍流标度律及速度差扭率与多个因素的关系, 这些因素包括: 两点距离与过滤尺度的比、大涡模拟雷诺数和过滤器类型. 结果显示, 当两点距离位于过滤尺度量级时或大涡模拟雷诺数较小时, 可解尺度标度律与未过滤流场的标度律相差很大进而必须加以修正, 而且可解尺度流场也不再总是满足 ESS 理论进而对应的速度差扭率也需要修正. 然后通过3个例子介绍了这些结果在大涡模拟亚格子模型中的应用.   相似文献   

12.
The subgrid-scale (SGS) model in a large-eddy simulation (LES) operates on a range of scales which is marginally resolved by discretization schemes. Accordingly, the discretization scheme and the subgrid-scale model are linked. One can exploit this link by developing discretization methods from subgrid-scale models, or the converse. Approaches where SGS models and numerical discretizations are fully merged are called implicit LES (ILES). Recently, we have proposed a systematic framework for the design, analysis, and optimization of nonlinear discretization schemes for implicit LES. In this framework parameters inherent to the discretization scheme are determined in such a way that the numerical truncation error acts as a physically motivated SGS model. The resulting so-called adaptive local deconvolution method (ALDM) for implicit LES allows for reliable predictions of isotropic forced and decaying turbulence and of unbounded transitional flows for a wide range of Reynolds numbers. In the present paper, ALDM is evaluated for the separated flow through a channel with streamwise-periodic constrictions at two Reynolds numbers Re = 2,808 and Re = 10,595. We demonstrate that, although model parameters of ALDM have been determined for isotropic turbulence at infinite Reynolds number, it successfully predicts mean flow and turbulence statistics in the considered physically complex, anisotropic, and inhomogeneous flow regime. It is shown that the implicit model performs at least as well as an established explicit model.   相似文献   

13.
14.
Shock waves drastically alter the nature of Reynolds stresses in a turbulent flow, and conventional turbulence models cannot reproduce this effect. In the present study, we employ explicit algebraic Reynolds stress model (EARSM) to predict the Reynolds stress anisotropy generated by a shockwave. The model by Wallin and Johansson (2000) is used as the baseline model. It is found to over-predict the post-shock Reynolds stresses in canonical shock turbulence interaction. The budget of the transport equation of Reynolds stresses computed using linear interaction analysis shows that the unsteady shock distortion mechanism and the pressure–velocity correlations are important. We propose improvement to the baseline model using linear interaction analysis results and redistribute the turbulent kinetic energy between the principle Reynolds stresses. The new model matches DNS data for the amplification of Reynolds stresses across the shock and their post-shock evolution, for a range of Mach numbers. It is applied to oblique shock/boundary-layer interaction at Mach 5. Significant improvements are observed in predicting surface pressure and skin friction coefficient, with respect to experimental measurements.  相似文献   

15.
The main bottleneck in using Large Eddy Simulations at high Reynolds number is the requirement of very fine meshes near walls. One of the main reasons why hybrid LES-RANS was invented was to eliminate this limitation. In this method unsteady RANS (URANS) is used near walls and LES is used away from walls. The present paper evaluates a method for improving standard LES-RANS. The improvement consists of adding instantaneous turbulent fluctuations (forcing conditions) at the matching plane between the LES and URANS regions in order to trigger the equations to resolve turbulence. The turbulent fluctuations are taken from synthesized homogeneous turbulence assuming a modified von Kármán spectrum. Both isotropic and non-isotropic fluctuations are evaluated. The new approach is applied to fully developed channel flow and it is shown that the imposed fluctuations considerably improve the predictions. It is found that increasing the prescribed turbulent length scale of the synthesized turbulence provides excellent agreement with the classical log-law.  相似文献   

16.
 Measurements of turbulence properties of solutions of polymers have been made over a large range of drag-reduction, in a fully-developed channel flow. At flows close to maximum drag-reduction the Reynolds stresses were approximately zero over the whole cross section of the channel. Added mean polymer stresses were observed in the viscous wall region for small drag-reduction and over the whole cross-section for large drag-reduction. Even though the Reynolds stresses are zero, the velocity profile is not parabolic because of the presence of these mean stresses. We interpret the results by arguing that the interaction of turbulence with the polymers introduces mean and fluctuating polymer stresses which can create turbulence. The observation that the turbulence modification depends on the manner by which the polymers are introduced into the flow supports the notion that the polymers need to form aggregates in order to be effective. Received: 29 September 1998 / Accepted: 10 February 1999  相似文献   

17.
Large Eddy Simulation (LES) of the decay of isotropic turbulence and of channel flow has been performed using an explicit second-order unstructured grid algorithm for tetrahedral cells. The algorithm solves for cell-averaged values using the finite volume form of the unsteady compressible Jittered Navier-Stokes equations. The inviscid fluxes are obtained from Godunov's exact Riemann solver. Reconstruction of the flow variables to the left and right sides of each face is performed using least squares or Frink's method. The viscous fluxes and heat transfer are obtained by application of Gauss' theorem. LES of the decay of nearly incompressible isotropic turbulence has been performed using two models for the SGS stresses: the Monotone Integrated Large Eddy Simulation (MILES) approach, wherein the inherent numerical dissipation models the sub-grid scale (SGS) dissipation, and the Smagorinsky SGS model. The results using the MILES approach with least squares reconstruction show good agreement with incompressible experimental data. The contribution of the Smagorinsky SGS model is negligible. LES of turbulent channel flow was performed at a Reynolds number (based on channel height and bulk velocity) of 5600 and Mach number of 0.5 (at which compressibility effects are minimal) using Smagorinsky's SGS model with van Driest damping. The results show good agreement with experimental data and direct numerical simulations for incompressible channel flow. The SGS eddy viscosity is less than 10% of the molecular viscosity, and therefore the LES is effectively MILES with molecular viscosity.  相似文献   

18.
In this paper, a three-dimensional filter-matrix lattice Boltzmann (FMLB) model based on large eddy simulation (LES) was verified for simulating wall-bounded turbulent flows. The Vreman subgrid-scale model was employed in the present FMLB–LES framework, which had been proved to be capable of predicting turbulent near-wall region accurately. The fully developed turbulent channel flows were performed at a friction Reynolds number Reτ of 180. The turbulence statistics computed from the present FMLB–LES simulations, including mean stream velocity profile, Reynolds stress profile and root-mean-square velocity fluctuations greed well with the LES results of multiple-relaxation-time (MRT) LB model, and some discrepancies in comparison with those direct numerical simulation (DNS) data of Kim et al. was also observed due to the relatively low grid resolution. Moreover, to investigate the influence of grid resolution on the present LES simulation, a DNS simulation on a finer gird was also implemented by present FMLB–D3Q19 model. Comparisons of detailed computed various turbulence statistics with available benchmark data of DNS showed quite well agreement.  相似文献   

19.
Turbulent characteristics of shear-thinning fluids in recirculating flows   总被引:1,自引:0,他引:1  
 A miniaturised fibre optic Laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1–0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present downstream turbulence field was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. Received: 23 February 1999/Accepted: 28 April 1999  相似文献   

20.
The paper presents the detailed formulation and validation results of simple and robust procedures for the generation of synthetic turbulence aimed at providing artificial turbulent content at the RANS-to-LES interface within a zonal Wall Modelled LES of attached and mildly separated wall-bounded flows. There are two versions of the procedure. The aerodynamic version amounts to a minor modification of a synthetic turbulence generator developed by the authors previously, but the acoustically adapted version is new and includes an internal damping layer, where the pressure field is computed by “weighting” of the instantaneous pressure fields from LES and RANS. This is motivated by the need to avoid creating spurious noise as part of the turbulence generation. In terms of pure aerodynamics, the validation includes canonical shear flows (developed channel flow, zero pressure gradient boundary layer, and plane mixing layer), as well as a more complex flow over the wall-mounted hump with non-fixed separation and reattachment, with emphasis on a rapid conversion from modeled to resolved Reynolds stresses. The aeroacoustic applications include the flow past a trailing edge and over a two-element airfoil configuration. In all cases the methodology ensures a very acceptable accuracy for the mean flow, turbulent statistics and, also, the near- and far-field noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号