首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The lattice Boltzmann (LB) method is used to study the hydrodynamic force and torque acting on a sphere held stationary between parallel plates in pressure‐driven flow. This and associated flow configurations are explored in this paper. LB results are in excellent agreement with existing theory and numerical results for simple pressure‐driven flow between parallel plates, for flow through a periodic medium of spheres [Zick AA, Homsy GM. Stokes flow through periodic arrays of spheres. Journal of Fluid Mechanics 1982; 115: 13], and for the force and torque acting on a sphere held fixed at the quarter vertical position in a pressure‐driven flow between parallel plates. In the latter case, LB calculations reveal a screening effect caused by neighboring periodic images of the test sphere. It is shown that the test sphere is hydrodynamically decoupled from its periodic images when separated by approximately 30 sphere radii. LB results for force and torque as a function of sphere height and flow cell height are also reported. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

2.
Capillary interactions are fundamentally important in many scientific and industrial fields. However, most existing models of the capillary bridges and capillary forces between two solids with a mediated liquid, are based on extremely simple geometrical configurations, such as sphere–plate, sphere–sphere, and plate–plate. The capillary bridge and capillary force between two axisymmetric power–law profile particles with a mediated constant-volume liquid are investigated in this study. A dimensionless method is adopted to calculate the capillary bridge shape between two power–law profile particles based on the Young–Laplace equation. The critical rupture criterion of the liquid bridge is shown in four forms that produce consistent results. It was found that the dimensionless rupture distance changes little when the shape index is larger than 2. The results show that the power–law index has a significant influence on the capillary force between two power–law particles. This is directly attributed to the different shape profiles of power–law particles with different indices. Effects of various other parameters such as ratio of the particle equivalent radii, liquid contact angle, liquid volume, and interparticle distance on the capillary force between two power–law particles are also examined.  相似文献   

3.
Singular perturbation techniques are used to investigate the slow, asymmetric flow around a sphere positioned eccentrically within a long, circular, cylindrical tube filled with viscous fluid. The results apply to situations in which the sphere occupies virtually the entire cross section of the cylinder, so that the clearance between the particle and tube wall is everywhere small compared with both the sphere and tube radii. The technique is an improvement over conventional “lubrication-theory” analyses.Asymptotic expansions, valid for small dimensionless clearances, are obtained for the hydrodynamic force, torque and pressure drop for flow past a stationary sphere, as well as for the case of a sphere translating or rotating in an otherwise quiescent fluid. These expansions are employed to predict the macroscopic behavior of both a neutrally-buoyant sphere suspended in a Poiseuille flow, and a sedimenting sphere in a vertical tube.The results find application in capillary blood flow, pipeline transport of encapsulated materials, and falling-ball viscometers.  相似文献   

4.
The history force model accounts for temporal development in fluid gradients in the viscous region surrounding a particle in point particle methods. The calculation of the history force typically requires storing and using relative velocity information during the life time of the particle. For a large number of particles integrated over large times, history force calculation can become prohibitively expensive. The current work presents a new modeling approach to calculate the history force in which a decay function is applied to a stored cumulative value of the history force. The proposed formulation is equivalent to applying the same function obtained from a constant acceleration assumption to a running average of the acceleration within the memory time of the particle. The new force model is validated with experimental measurements of settling spheres at Reynolds numbers ranging from around one to a few hundreds and at density ratios from 1.2 to about 9.32. More validation work was carried-out with experimental measurements of oscillating spheres at different frequencies and amplitudes, as well as bouncing spheres at different Reynolds numbers and density ratios. The model shows very good agreement with the experiments of settling spheres and reasonable/good agreement with oscillating and bouncing sphere experiments. The proposed model significantly reduces the computational resources required to calculate the history force especially when large number of particles need to be integrated over long times.  相似文献   

5.
Based on the finite series method, the Gaussian standing or quasi-standing beam is expressed in terms of spherical wave functions and a weighting parameter, which describe the beam shape and location relative to the particle. An expression is derived for the radiation force on a sphere centered on the axis of a Gaussian standing or quasi-standing wave propagating in an ideal fluid. Rigid, fluid, elastic, and viscoelastic spheres immersed in water are treated as examples. In addition, a method is proposed to compute the axial acoustic radiation force when the sphere is translated axially. Results indicate the capability of the proposed method to manipulate and separate spheres based on their mechanical and acoustical properties. The interaction of a Gaussian quasi-standing beam with a sphere can result in periodic axial force under specific operating conditions. The results presented here may provide a theoretical basis for the development of acoustical tweezers in a Gaussian standing beam, which would be useful in micro-fluidic lab-on-chip applications.  相似文献   

6.
A novel approach is presented to study the benchmark problem of flow around spheres in model dilute solutions of monodisperse samples of atactic polystyrene in di-octyl phthalate. Spheres are held stationary on flexible cantilevers of known spring-constant, k, while the polymer solutions are pumped past at controlled flow rates, allowing access to a wide range of Deborah number. In this way the non-Newtonian forces experienced by the spheres can be measured as a function of Deborah number, while detailed observations and measurements of birefringence are made, enabling assessment of macromolecular strain and orientation. In addition the flow field around a sphere has been measured in an a-PS solution. Experiments have been performed on a single sphere and on two spheres axially aligned in the direction of flow. The extensional flow around the downstream stagnation point of the single sphere is found to play a pivotal role in the development of molecular strain and stress, resulting in flow modification and subsequent non-Newtonian behaviour. The flow birefringence in the wake is found to modify severely the flow around a second, downstream, sphere, affecting the non-Newtonian forces encountered by the second sphere. This provides an explanation for the time interval dependent terminal velocity often observed when two spheres follow the same path through viscoelastic liquids.  相似文献   

7.
A multipole re-expansion solution for two nonidentical dielectric spheres in a parallel electric field is used to determine the critical ratio of particle radii which leads to the strongest force of attraction between the spheres at various interstices and under varying dielectric properties. These critical ratios provide genuine optimal dimensions, in the sense that the force of attraction decreases for both increasing and decreasing ratios. Numerical results are compared with experimental results from the literature and discussed from the perspective of the impact on the design of electrorheological nanofluids.  相似文献   

8.
The interaction among two spheres in tandem formation are studied for a Reynolds number of 300 using both steady and pulsating inflow conditions. The purpose is to further investigate the force characteristics as well as the shedding patterns of the two spheres as the separation distance is changed from 1.5 to 12 sphere diameters. The method used for the simulations is the volume of solid (VOS) method, an approach based on the volume of fluid (VOF) method. Comparisons with other computational methods have shown VOS to accurately resolve the flow field around solid spheres. The results show that the separation distance plays a significant role in changing the flow patterns and shedding frequencies at moderate separation distances, whereas effect on drag is observed even at a separation distance of 12 diameters.  相似文献   

9.
A combined analytical–numerical study for the creeping flow caused by a spherical fluid or solid particle with a slip-flow surface translating in a viscous fluid along the centerline of a circular cylindrical pore is presented. To solve the axisymmetric Stokes equations for the fluid velocity field, a general solution is constructed from the superposition of the fundamental solutions in both cylindrical and spherical coordinate systems. The boundary conditions are enforced first at the pore wall by the Fourier transforms and then on the particle surface by a collocation technique. Numerical results for the hydrodynamic drag force acting on the particle are obtained with good convergence for various values of the relative viscosity or slip coefficient of the particle, the slip parameter of the pore wall, and the ratio of radii of the particle and pore. For the motion of a fluid sphere along the axis of a cylindrical pore, our drag results are in good agreement with the available solutions in the literature. As expected, the boundary-corrected drag force for all cases is a monotonic increasing function of the ratio of particle-to-pore radii, and approaches infinity in the limit. Except for the case that the cylindrical pore is hardly slip and the value of the ratio of particle-to-pore radii is close to unity, the drag force exerted on the particle increases monotonically with an increase in its relative viscosity or with a decrease in its slip coefficient for a constant ratio of radii. In a comparison for the pore shape effect on the axial translation of a slip sphere, it is found that the particle in a circular cylindrical pore in general acquires a lower hydrodynamic drag than in a spherical cavity, but this trend can be reversed for the case of highly slippery particles and pore walls.  相似文献   

10.
The changes in force characteristics as well as the shedding patterns for various dual sphere configurations are studied. The Reynolds numbers considered are 300, 600 and two different inflow conditions are used: steady and pulsating. The sphere formations are defined by the separation distance D0 between the spheres and the angle between the line connecting the centres of the spheres and the main flow direction, γ. The position of one of the spheres is varied in the range 0°–90° using a 15° increment. Two separation distances are studied; 1.5D and 3D. The method used for the simulations is the Volume of Solid (VOS) approach, a method based on Volume of Fluid (VOF). A major conclusion from this work is that the sphere interaction alters the wake dynamics by obstructing the vortex shedding (generating a steady wake or a wake with lower Strouhal number) and by changing the direction of the lift force so that it in most cases is directed in the plane containing the sphere centres. The results also show that changing the inflow condition gives the same relative change in drag and lift as for a single sphere. The drag is substantially reduced by placing the sphere downstream in a tandem arrangement and slightly increased in a side-by-side arrangement. However, the effect is decreased by increasing separation distance and increasing Reynolds number.  相似文献   

11.
Experimental results are presented on natural convection in a spherical shell of inner and outer radii r 1 = 14 mm and r 2 = 35 mm, with the inner sphere cooled and the outer sphere heated. The fluids filling the shell are two different silicon oils having Prandtl numbers 39 and 233. Both spheres are fixed together and can be rotated. In the studied regime, both Coriolis and centrifugal forces become significant. For sufficiently small Rayleigh numbers the resulting flow pattern is axisymmetric and steady, consisting of a plume descending from the south pole of the inner sphere, and returning in the equatorial regions. For greater Rayleigh numbers the flow becomes non-axisymmetric, with azimuthal modes m = 2 to 4 arising. We map out the critical Rayleigh number for the onset of these different modes, and consider how they vary with increasingly rapid overall rotation. Detailed flow measurements are done by converting a standard 2D particle image velocimetry system into a scanning quasi-3D PIV system.  相似文献   

12.
An investigation of the flow resulting from the collision of two spheres at low Reynolds numbers is presented. Each sphere starts from rest and traverses a distance of 5 sphere diameters to the point of contact. Experimental and numerical results are compared for a symmetric collision; that is, a collision between two spheres of the same diameter and travelling with the same velocity. The flow consists of two axisymmetric recirculation zones which become a pair of colliding vortex rings, expanding radially from the collision point. Several examples of unbalanced collisions are also presented numerically, with one or both of the velocity and diameter of the spheres altered. These collisions break the symmetry, altering the post-collision expansion of the vortex rings.  相似文献   

13.
The capillary interactions, including the capillary force and capillary suction, between two unequal-sized particles with a fixed liquid volume are investigated. The capillary interaction model is used within the Young-Laplace framework. With the profile of the meridian of the liquid bridge, the capillary suction, and the liquid volume as state variables, the governing equations with two-fixed-point boundary are first derived using a variable substitution technique, in which the gravity effects are neglected. The capillary suction and geometry of the liquid bridge with a fixed volume are solved with a shooting method. In modeling the capillary force, the Gorge method is applied. The effects of various parameters including the distance between two particles, the ratio of particle radii, and the liquid-solid contact angles are discussed.  相似文献   

14.
Drag forces of interacting particles suspended in power-law fluid flows were investigated in this study. The drag forces of interacting spheres were directly measured by using a micro-force measuring system. The tested particles include a pair of interacting spheres in tandem and individual spheres in a cubic matrix of multi-sphere in flows with the particle Reynolds number from 0.7 to 23. Aqueous carboxymethycellulose (CMC) solutions and glycerin solutions were used as the fluid media in which the interacting spheres were suspended. The range of power-law index varied from 0.6 to 1.0. In conjunction to the drag force measurements, the flow patterns and velocity fields of power-law flows over a pair of interacting spheres were also obtained from the laser assisted flow visualization and numerical simulation.

Both experimental and computational results suggest that, while the drag force of an isolated sphere depends on the power-index, the drag coefficient ratio of an interacting sphere is independent from the power-law index but strongly depends on the separation distance and the particle Reynolds number. Our study also shows that the drag force of a particle in an assemblage is strongly positions dependent, with a maximum difference up to 38%.  相似文献   


15.
The three-dimensional steady water flow through unsaturated aggregated porous materials composed of simple cubic open packed and tetrahedral close packed assemblies of uniform porous spheres is investigated with electric analogues and numerical computations. Water around the spheres is considered to be discontinuous with flow restricted through isolated annular water lenses held by surface tension forces around the contact points between spheres. It is found that the conductance of individual spheres depends only on the size of the water lenses and is independent of the radius of the sphere. For a simple cubic packing the conductance for small lens radii is given by Weber’s formula for flow from an electrified disc into an infinite medium. It follows that the bulk hydraulic conductivity of these assemblies of porous spheres is also independent of aggregate size over a range of water contents. This independence is also shown in measurements of hydraulic conductivity of aggregates of diatomaceous earth that show a convergence to a single relationship between conductivity and water content when there is no longer continuity of water in the macropore space. The effect of the three-dimensional flow through aggregates on solute leaching is demonstrated by considering the numerical results of the stream-tube pattern in a sphere.  相似文献   

16.
Solutions are presented for the Stokes flow past finite axial assemblages of up to 9 spheres in an infinitely long cylindrical tube for a wide range of sphere spacings and sphere to cylinder diameter ratios. General solutions are constructed from the fundamental solutions to the governing equation in both the cylindrical and spherical coordinate systems. No-slip boundary conditions are enforced on the tube surface by constructing the Fourier transform of the general disturbance created by the spheres, as detected on the cylinder wall. The boundary conditions are then applied on the sphere surfaces by a previously developed series truncation technique.The calculated drag forces and zero-drag velocities demonstrate the interparticle interaction effects, the sphere-wall interactions, and the effects of wall damping on the inter-particle shielding phenomenon.  相似文献   

17.
An analysis is presented of the steady-state asymmetric motion of an incompressible viscous liquid between two concentric spheres rotating with constant angular velocities about various axes passing through their common center. The reaction force of the liquid on the inner sphere is determined; this force reduces to a resistive torque.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 179–180, May–June, 1974.  相似文献   

18.
An exact study based on the linear theory of elasticity is presented for the steady-state sound radiation characteristics of an arbitrarily thick radially inhomogeneous elastic isotropic hollow sphere, immersed in and filled with ideal compressible fluids, and subjected to an arbitrary axisymmetric time-harmonic driving force at its internal surface. A modal state equation with variable coefficients is set up in terms of appropriate displacement and stress functions and their spherical harmonics by means of the laminated approximation approach. Taylor’s expansion theorem is subsequently employed to solve the modal state equation, ultimately calculating a global transfer matrix. Numerical results are presented for a water-submerged/air-filled steel/zirconia FGM hollow sphere under an axisymmetric distributed internal pressure force. The effects of shell wall thickness, the material compositional gradient, frequency, and subtended polar angle of the internal pressure force on the far-field radiated pressure directivity patterns as well as the total radiated power are examined. It is demonstrated that the material gradient can significantly change the acoustical characteristics of hollow inhomogeneous sphere, especially for thick shells at high excitation frequencies. Limiting cases are considered and good agreements with available results as well as with the computations made by using a finite element package are obtained.  相似文献   

19.
In this paper, the wake effect on drag factor in the axisymmetric Oseen flow of the finite clusters of equally spaced spheres with same size is studied. Putting the Oseen lets on the centres of all the spheres, the series solution of the problem is obtained. By truncating the infinite series and applying the collocation method to solve a set of the linear algebraic equations, the approximate solution of the Oseen flow of finite clusters of spheres and the drag factor for each sphere are presented. The effect of the sphere number and spacing on the drag factor of each sphere under different Reynolds numbers are calculated and the wake effect as well as the shielding effect and the end effect are revealed. The influence of various parameters on the effects is considered and compared with the corresponding results of the Stokes flow. The convergence of the method is also studied numerically in this paper.  相似文献   

20.
The experimental and numerical analysis of spheres falling into viscous flows is considered. The physical model is built using a set of silicone and glass spheres falling into oil and water. The rigid‐body trajectory of the sphere and the free surface evolution are obtained from videos. The numerical results are obtained using two different finite element codes. The first code uses a fractional step approach with adaptive meshes and time‐step sizes whereas the second code uses a monolithic fully coupled fixed‐mesh technique. The results exhibit a good comparison between both numerical techniques and with the experiments. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号