首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Micromorphic theory envisions a material body as a continuous collection of deformable particles with finite size and inner structure. It is considered as the most successful top-down formulation of a two-level continuum model, in which the deformation is expressed as a sum of macroscopic continuous deformation and internal microscopic deformation of the inner structure. In this work, we revisit the original micromorphic theory and further construct a mathematical theory of micromorphic plasticity with generalized strain-based return mapping algorithm. The concept of material forces, which may also be referred as Eshelbian mechanics, was first derived for micromorphic thermo-visco-elastic solid, and, now in this work, it is extended to the micromorphic plasticity. The balance law of pseudo-momentum is formulated. The detailed expressions of Eshelby stress tensor, pseudo-momentum, and material forces are derived. Following this formulation, the failure mechanisms of micromorphic thermo-visco-elastoplastic materials can be further investigated.  相似文献   

2.
The purpose of this study is to present a micromechanical approach, based on the transformation field analysis (TFA), proposed by Dvorak, which has been generalized at Onera in order to analyze the nonlinear behavior of heterogeneous materials in elasto-viscoplasticity coupled with damage. In such analysis, the macroscopic constitutive equations are not purely phenomenological but are built up from multi-scale approaches starting from the knowledge of the properties of the constituents at the microscopic or mesoscopic scales. The model can take into account some local characteristics that can evolve during the thermo-mechanical applied loads or the manufacturing process, like the grain size for metallic alloys or the fiber volume fraction for composites.The determination of some specific tensors which are present in this formulation is closely linked to the microstructure morphology of heterogeneous materials constituting the macroscopic structure. For example, an Eshelby’s based approach is more appropriate to characterize polycrystalline materials with a random microstructure, while the homogenization of periodic media technique can be used for composite materials with a sufficiently regular microstructure. The proposed methodologies allowing to perform this nonlinear analysis across the scales are illustrated with examples based on the behavior of structures reinforced with a long fiber unidirectional metal matrix composite.  相似文献   

3.
本文总结了用显微激光分析仪对一般纤维增强复合材料进行透射式光弹性研究的近期工作.针对纤维复合材料违反传统光弹理论的偏振光学行为,讨论了纤维,基体的双折射率不同及由纤维,基体界面两侧出射的光在Airy斑重叠区发生干涉等问题,从更一般的角度探讨了最近的文章中所提出的新光弹公式中所含两个滞后量的存在性.  相似文献   

4.
This work presents a homogenization-based constitutive model for the mechanical behavior of elastomers reinforced with aligned cylindrical fibers subjected to finite deformations. The proposed model is derived by making use of the second-order homogenization method [Lopez-Pamies, O., Ponte Castañeda, P., 2006a. On the overall behavior, microstructure evolution, and macroscopic stability in reinforced rubbers at large deformations: I—theory. J. Mech. Phys. Solids 54, 807–830], which is based on suitably designed variational principles utilizing the idea of a “linear comparison composite.” Specific results are generated for the case when the matrix and fiber materials are characterized by generalized Neo-Hookean solids, and the distribution of fibers is periodic. In particular, model predictions are provided and analyzed for fiber-reinforced elastomers with Gent phases and square and hexagonal fiber distributions, subjected to a wide variety of three-dimensional loading conditions. It is found that for compressive loadings in the fiber direction, the derived constitutive model may lose strong ellipticity, indicating the possible development of macroscopic instabilities that may lead to kink band formation. The onset of shear band-type instabilities is also detected for certain in-plane modes of deformation. Furthermore, the subtle influence of the distribution, volume fraction, and stiffness of the fibers on the effective behavior and onset of macroscopic instabilities in these materials is investigated thoroughly.  相似文献   

5.
In this work, two methodologies for the analysis of unidirectional fiber reinforced composite materials are presented.The first methodology used is a generalized anisotropic large strains elasto-plastic constitutive model for the analysis of multiphase materials. It is based on the mixing theory of basic substance. It is the manager of the several constitutive laws of the different compounds and it allows to consider the interaction between the compounds of the composite materials. In fiber reinforced composite materials, the constitutive behavior of the matrix is isotropic, whereas the fiber is considered orthotropic. So, one of the constitutive model used in the mixing theory needs to consider this characteristic. The non-linear anisotropic theory showed in this work is a generalization of the classic isotropic plasticity theory (A Continuum Constitutive Model to Simulate the Mechanical Behavior of Composite Materials, PhD Thesis, Universidad Politécnica de Cataluña, 2000). It is based in a one-to-one transformation of the stress and strain spaces by means of a four rank tensor.The second methodology used is based on the homogenization theory. This theory divided the composite material problem into two scales: macroscopic and microscopic scale. In macroscopic level the composite material is assuming as a homogeneous material, whereas in microscopic level a unit volume called cell represents the composite (Tratamiento Numérico de Materiales Compuestos Mediante la teorı́ de Homogeneización, PhD Thesis, Universidad Politécnica, de Cataluña 2001). This formulation presents a new viewpoint of the homogenization theory in which can be found the equations that relate both scales. The solution is obtained using a coupled parallel code based on the finite elements method for each scale problem.  相似文献   

6.
基于均匀化理论韧性复合材料塑性极限分析   总被引:6,自引:0,他引:6  
运用细观力学中的均匀化方法分析了韧性复合材料的塑性极限承载能力.从反映复合材料细观结构的代表性胞元入手,将均匀化理论运用到塑性极限分析中,计算由理想刚塑性、Mises组分材料构成的复合材料的极限承载能力.运用机动极限方法和有限元技术,最终将上述问题归结为求解一组带等式约束的非线性数学规划问题,并采用一种无搜索直接迭代算法求解.为复合材料的强度分析提供了一个有效手段.  相似文献   

7.
在现代工程结构中,纤维增强复合材料具有较高的刚度重量比、优异的耐久性和设计灵活性等优点,因此得到了广泛应用.本文结合细观力学中的Mori-Tanaka方法和Halpin-Tsai方法推导了混杂碳纤维和玻璃纤维增强复合材料有效弹性模量的解析表达式.通过引入参数λ,提出了计算随机方向混合纤维增强复合材料弹性模量的新模型,分析了纤维长径比和体积分数对复合材料弹性模量的影响.结果表明,复合材料的弹性性能对纤维长径比和体积分数非常敏感.根据提出的理论,混杂纤维增强复合材料的弹性模量处于单一纤维(纯碳纤维或纯玻璃纤维)增强复合材料弹性模量之间.对于单一纤维增强复合材料,采用Halpin-Tsai方法计算的复合材料弹性模量高于Mori-Tanaka方法计算结果.  相似文献   

8.
In this paper the double-inclusion model, originally developed to determine effective linear elastic properties of composite materials, is reformulated and extended to predict the effective nonlinear elastic–plastic response of two-phase particulate composites reinforced with spherical particles. The resulting problem of elastic–plastic deformation of a double-inclusion embedded in an infinite reference medium subjected to an incrementally applied far-field strain is solved by the finite element method. The proposed double-inclusion model is evaluated by comparison of the model predictions to the available exact results obtained by the direct approach using representative volume elements containing many particles. It is found that the double-inclusion formulation is capable of providing accurate prediction of the effective elastic–plastic response of two-phase particulate composites at moderate particle volume fractions.  相似文献   

9.
A homogenization theory for time-dependent deformation such as creep andviscoplasticity of nonlinear composites with periodic internal structures is developed. To beginwith, in the macroscopically uniform case, a rate-type macroscopic constitutive relation betweenstress and strain and an evolution equation of microscopic stress are derived by introducing twokinds of Y-periodic functions, which are determined by solving two unit cell problems.Then, the macroscopically nonuniform case is discussed in an incremental form using thetwo-scale asymptotic expansion of field variables. The resulting equations are shown to beeffective for computing incrementally the time-dependent deformation for which the history ofeither macroscopic stress or macroscopic strain is prescribed. As an application of the theory,transverse creep of metal matrix composites reinforced undirectionally with continuous fibers isanalyzed numerically to discuss the effect of fiber arrays on the anisotropy in such creep.  相似文献   

10.
Fracture in a planar randomly ordered fiber network subjected to approximately homogenous macroscopic stress and strain field is considered. A theory describing material degradation on a macroscopic scale is derived via Griffith’s energy balance for an internal fractured area in the network assuming the active fracture process on the microscopic level is fiber–fiber bond breakage. Attention is confined to a purely mechanical theory assuming isothermal processes and the theory relies on equations commonly used in theories of statistical physics. In the theory, a bond breaking driving force is stated to be equal to the elastic strain energy density of a non-fractured network. A debond fraction can be coupled to a linearly decrease of the network’s macroscopic stiffness. The rate of the fracture processes is determined by the network’s inherent properties (bond and fiber density, bond strength, etc.). During the loading process, until onset of localization, the bond breaks occur at randomly distributed locations spread over the fiber network and the theory estimate material degradation on a macroscopic level. When localization takes place, the fracture process changes from a two-dimensional randomly distributed process to a one-dimensional process and other theories have to be included to describe post-localization behavior. An approximately in-plane isotropic low-density paper is used in tensile experiments while monitoring acoustic emission activity to evaluate the theory. The experimentally obtained results support the theory surprisingly well.  相似文献   

11.
A micromechanics-based approach for the derivation of the effective properties of periodic linear elastic composites which exhibit strain gradient effects at the macroscopic level is presented. At the local scale, all phases of the composite obey the classic equations of three-dimensional elasticity, but, since the assumption of strict separation of scales is not verified, the macroscopic behavior is described by the equations of strain gradient elasticity. The methodology uses the series expansions at the local scale, for which higher-order terms, (which are generally neglected in standard homogenization framework) are kept, in order to take into account the microstructural effects. An energy based micro–macro transition is then proposed for upscaling and constitutes, in fact, a generalization of the Hill–Mandel lemma to the case of higher-order homogenization problems. The constitutive relations and the definitions for higher-order elasticity tensors are retrieved by means of the “state law” associated to the derived macroscopic potential. As an illustration purpose, we derive the closed-form expressions for the components of the gradient elasticity tensors in the particular case of a stratified periodic composite. For handling the problems with an arbitrary microstructure, a FFT-based computational iterative scheme is proposed in the last part of the paper. Its efficiency is shown in the particular case of composites reinforced by long fibers.  相似文献   

12.
A continuum theory for a fiber-reinforced material with debonding between the constituents is presented. The debonding phenomenon is simulated by imposing the continuity of the normal displacements at the fiber-matrix interfaces while allowing free tangential slip there. The derived theory is of the lowest order and is obtained by using a first order expansion in the displacements in the fiber and matrix phases. The theory is applied to investigate the effect of debonding on the propagation of waves in a boron/epoxy fiber reinforced material. It is shown that an additional mode of propagation is obtained as compared with the usual case of perfect bonding  相似文献   

13.
Conceived as an alternative method to deal with highly heterogeneous composite structures, the homogenization approach developed in this paper is devoted to the formulation of the thermoviscoelastic behavior at the macroscopic level. Attention is focused on composites involving ageing constituents. The concept of strain localization tensor is extended and the memory effects induced by the homogenization process are discussed. The case of multilayered thermoviscoelastic media is examined in the last part of the paper. Taking into account local anisotropic behavior as well as ageing, an explicit formulation is derived for the macroscopic relaxation moduli. An illustrative example is presented where the memory effects are quantified in terms of relaxation times.  相似文献   

14.
Composite materials, such as fiber reinforced polymers (FRP), are more and more common as strengthening solution for existing structures. Adhesion between FRP and the existing substrate generally represents one of the main concerns on the effectiveness of these techniques. The bond behaviour of composite materials on concrete substrates (but also steel, masonry and wooden ones) are generally investigated by means of pull-out tests. The present paper, starting from the most common assumptions of the mechanical behaviour of the various materials, proposes a fully-analytical formulation for determining the response in terms of the relationship between the external force and the corresponding maximum interface slip observed in those tests. The proposed approach emphasises the key behavioural differences between “short” and “long” bonding length. The former are characterised by a softening behaviour of the relationship between the applied force and the maximum slip, while the latter exhibits a numerically challenging snap-back behaviour. All the key points of the relationship between the external force and the maximum interface slip are defined in closed-form for both the above mentioned cases. Finally, a comparison with some experimental results obtained on FRP-to-concrete pull-out tests are proposed.  相似文献   

15.
利用SHPB装置对钨丝增强Zr基非晶复合材料和钨骨架增强Zr基非晶复合材料进行了3种环境温度下多种应变率的动态压缩性能测试。比较了2种材料的动态力学性能,发现二者均具有应变率敏感性和较强的塑性变形能力。但二者承载机制存在较大差异。钨丝增强结构变形主要表现在钨丝的失稳,由数值模拟初步分析了这种局部结构失稳控制的变形以及热失稳现象;钨骨架增强结构变形前期钨骨架起主要承载作用,而不是各成分的共同作用,这导致材料的屈服强度比纯非晶和纯钨的低。  相似文献   

16.
Moisture absorption in natural fiber reinforced composites causes remarkable degradation of mechanical properties. A nonlinear constitutive model is proposed to study the effect of the water uptake on the mechanical properties of unidirectional natural fiber reinforced composites. Accompanying the water absorption in the composites, there are several irreversible thermodynamic processes such as fiber degradation and interface damage. The energy dissipation induced by these processes is described by an internal variable, and two degradation parameters representing interface damage and fiber degradation are introduced to reflect the modulus reduction of the composite. Particularly, the model is used to derive the evolution of elastic moduli influenced by the moisture absorption. The predictions from the present model show a good agreement with experiment results of sisal fiber unidirectional reinforced composites.  相似文献   

17.
A three-phase cylindrical model for analyzing fiber composite subject to in-plane mechanical load under the coupling effects of multiple physical fields (thermo, electric, magnetic and elastic) is presented. By introducing an eigenstrain corresponding to the thermo-electro-magnetic-elastic effect, the complex multi-field coupling problem can be reduced to a formal in-plane elasticity problem for which an exact closed form solution is available. The present three-phase model can be applied to fiber/interphase/matrix composites, such that a lot of interesting thermo-electro-magnetism and stress coupling phenomena induced by the interphase layer are revealed. The present model can also be applied to fiber/matrix composites, in terms of which a generalized self-consistent method (GSCM) is developed for predicting the effective properties of piezoelectric–magnetic fiber reinforced composites. The effective piezoelectric, piezomagnetic, thermoelectric and magnetoelectric moduli can be expressed in compact explicit formulae for direct references and applications. A comparison of the predictions by the GSCM with available experimental data is presented, and interesting magnification effects and peculiar product properties are discussed. As a theoretical basis for the GSCM, the equivalence of the three sets of different average field equations in predicting the effective properties are proved, and this fact provides a strong evidence of mathematical rigor and physical realism in the formulation.  相似文献   

18.
19.
20.
The clasto-plastic constitutive behaviors of continuous fiber reinforced composites under cyclic loadings are studied by the micromechanics method in which the equal-strain model is used in the fiber direction, the equal-stress model in the other directions. It is supposed that fiber is linearly elastic and matrix is clastic-viscoplastic. The constitutive equations of the matrix are described by Bodner-Partom's unified constitutive theory. Boron/Aluminum composite, as an example, is investigated in detail for an understanding of the stress-strain relations and initial yield behaviors of metal matrix composites. Present results are compared with the experimental data.The project was supported by the Chinese National Natural Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号