首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
以非局部弹性理论为基础,考虑了碳纳米管的小尺度效应,采用欧拉-伯努利梁模型给出了单层碳纳米管的动力学控制方程.研究了小尺度效应对振动简支单层碳纳米管边界条件的影响,并通过具体算例与经典连续介质理论的简支边界条件进行比较.结果表明:简支条件下考虑小尺度效应的非局部弹性理论和经典连续介质理论的边界条件具有同一性.  相似文献   

2.
本文从一类变系数二阶微分方程的一个通解入手,分析了一类非均质楔形直杆的纵向自由振动,得到了这类直杆在一种边界条件下的频率方程和振型函数.  相似文献   

3.
局部作用原理在发展经典连续介质力学的本构关系中起着重要的作用,由此导出的简单物质理论得到了广泛的应用.然而,随着科技的发展,各种具有微结构的新材料不断涌现,理论和实验表明,非局部理论可以更好地刻画这些材料的宏观力学行为.本文简要介绍了一些传统的非局部弹性理论,包括Eringen 理论、Kunin 理论、Mindlin 理论;阐述了针对复合材料发展的,具有时间-空间非局部特征的Willis 方程、最新的时间-空间耦合非局部弹性动力学理论以及近场动力学理论.时间-空间非局部理论反映了复合材料宏观性能固有的非局部特征,而具有空间非局部特征的近场动力学理论便于处理具有不连续性的问题.最后,本文讨论了非局部理论的发展中值得关注的一些问题.  相似文献   

4.
本文利用非局部弹性理论研究了单层石墨烯的纳米板的横向自由振动响应.通过迭代法推导了非局部应力表达,进一步通过哈密顿原理推导了纳米板的控制方程,应用纳维解法得到四边简支纳米板振动固有频率的数值解,并将本文研究结果与已有文献结果进行对比,进一步讨论了小尺寸效应,以及纳米板的三维尺寸和半波数对振动频率的影响.结果表明:非局部效应的存在使得纳米板的等效刚度和固有频率降低;半波数的增加则使得纳米板的固有频率提高.相关分析结果对基于二维纳米材料的新设备的设计和优化具有重要意义.  相似文献   

5.
基于非局域弹性理论研究了纳米尺度压电球壳的径向自由振动,为了得到控制方程的解析解忽略了非局域效应对电位移的影响.假设球壳沿径向极化,推导了用径向位移表达的非局域微分控制方程.考虑到尺度效应,应用边界条件得到了球壳径向自由振动的频率方程.利用频率方程本文讨论了自然频率与非局域参数以及半径比之间的关系.根据计算结果,径向振动频率受到非局域效应的显著影响.  相似文献   

6.
变截面弹性直杆纵振动分析的小波——DQ法   总被引:2,自引:1,他引:1  
在经典微分求积(DQ)法基础上, 根据多分辨分析理论, 以尺度函数为基础构造插 值基函数, 形成了新的微分方程边值问题的求解方法------小波--DQ法, 并应用该方法分析了变截面弹性直杆的纵振动问题, 给出了其频率方程, 计算出了不同参数下固 支--固支, 自由--自由楔形直杆和锥形直杆的固有频率, 数值结果表明该方法是一个简单易行高精度的方法, 该方法可以推广应用于其他力学问题的数值分析.  相似文献   

7.
李渊  邓子辰  叶学华  王艳 《力学学报》2016,48(1):135-139
基于连续介质力学理论和辛弹性理论,将载流碳纳米管等效为铁木辛柯梁,采用哈密顿变分原理建立了载流碳纳米管的振动控制方程;引入对偶变量将振动控制方程从拉格朗日体系导入到哈密顿体系下;通过波传播方法分析了载流碳纳米管的能带结构;研究了流体密度、流速对载流碳纳米管能带结构的影响;同时计算了载流碳纳米管的散射矩阵.研究发现:管内流速以及流体密度对剪切频率和弯曲频率有着非常重要的影响.研究结果表明:载流碳纳米管的剪切频率和弯曲频率因流体的加入而减小,并随流速及流体密度的增大而减小;通过对数值结果的分析发现:载流碳纳米管由于管内流体、流速以及流体密度的作用,会使得载流碳纳米管变的更"软".其中,哈密顿体系下所得出的载流碳纳米管弯曲频率随管内流体密度的增加而变小,有别于在拉格朗日体系下非局部梁理论所得的结论.同时,数值结果表明散射矩阵是酉矩阵,辛体系下的入射波功率流与反射波功率流相等,即功率流守恒,体现了辛弹性力学理论的优越性.  相似文献   

8.
利用非局部应变梯度理论研究了纳米板横向自由振动特性。通过迭代法获得非局部应力的渐近表达式,利用哈密顿变分原理推导了纳米板的振动控制方程。针对四边简支边界条件,运用双重三角级数法给出了板固有频率的表达式,然后研究了非局部参数、材料特征参数、几何尺寸对纳米板自振频率的影响。数值结果表明:非局部效应会弱化纳米板的等效刚度,因而使板的固有频率降低,应变梯度效应则与之相反,两类效应仅在纳米尺度下对自振频率有显著影响;板几何尺寸的改变也会对其振动频率产生重要影响。  相似文献   

9.
利用非局部应变梯度理论研究了纳米板横向自由振动特性。通过迭代法获得非局部应力的渐近表达式,利用哈密顿变分原理推导了纳米板的振动控制方程。针对四边简支边界条件,运用双重三角级数法给出了板固有频率的表达式,然后研究了非局部参数、材料特征参数、几何尺寸对纳米板自振频率的影响。数值结果表明:非局部效应会弱化纳米板的等效刚度,因而使板的固有频率降低,应变梯度效应则与之相反,两类效应仅在纳米尺度下对自振频率有显著影响;板几何尺寸的改变也会对其振动频率产生重要影响。  相似文献   

10.
圆截面弹性细杆的平面振动   总被引:1,自引:1,他引:0  
基于Kirchhoff理论讨论圆截面弹性细杆的平面振动.以杆中心线的Frenet坐标系为参考系建立动力学方程.杆作平面运动时,其扭转振动与弯曲振动解耦.讨论任意形状杆的扭转振动和轴向受压直杆在无扭转条件下的弯曲振动,证明直杆平衡的静态Lyapunov稳定性与欧拉稳定性条件为动态稳定性的必要条件.考虑轴向力和截面转动惯性效应的影响,导出弯曲振动的固有频率.  相似文献   

11.
The static behavior of an elastoplastic one-dimensional lattice system in bending, also called a microstructured elastoplastic beam or elastoplastic Hencky bar-chain (HBC) system, is investigated. The lattice beam is loaded by concentrated or distributed transverse monotonic forces up to the complete collapse. The phenomenon of softening localization is also included. The lattice system is composed of piecewise linear hardening–softening elastoplastic hinges connected via rigid elements. This physical system can be viewed as the generalization of the elastic HBC model to the nonlinear elastoplasticity range. This lattice problem is demonstrated to be equivalent to the finite difference formulation of a continuous elastoplastic beam in bending. Solutions to the lattice problem may be obtained from the resolution of piecewise linear difference equations. A continuous nonlocal elastoplastic theory is then built from the lattice difference equations using a continualization process. The new nonlocal elastoplastic theory associated with both a distributed nonlocal elastoplastic law coupled to a cohesive elastoplastic model depends on length scales calibrated from the spacing of the lattice model. Differential equations of the nonlocal engineering model are solved for the structural configurations investigated in the lattice problem. It is shown that the new micromechanics-based nonlocal elastoplastic beam model efficiently captures the scale effects of the elastoplastic lattice model, used as the reference. The hardening–softening localization process of the nonlocal continuous model strongly depends on the lattice spacing which controls the size of the nonlocal length scales.  相似文献   

12.
In this paper, a nonlinear theory of nonlocal asymmetric, elastic solids is developed on the basis of basic theories of nonlocal continuum fieM theory and nonlinear continuum mechanics. It perfects and expands the nonlocal elastic fiteld theory developed by Eringen and others. The linear theory of nonlocal asymmetric elasticity developed in [1] expands to the finite deformation, We show that there is the nonlocal body moment in the nonlocal elastic solids. The noniocal body moment causes the stress asymmetric and itself is caused by the covalent bond formed by the reaction between atoms. The theory developed in this paper is applied to explain reasonably that curves of dispersion relation of one-dimensional plane longitudinal waves are not similar with those of transverse waves.  相似文献   

13.
Nonlocal elasticity with nonhomogeneous elastic moduli and internal length is addressed within a thermodynamic framework suitable to cope with continuum nonlocality. The Clausius–Duhem inequality, enriched by the energy residual, is used to derive the state equations and all other thermodynamic restrictions upon the constitutive equations. A phenomenological nonhomogeneous nonlocal (strain difference-dependent) elasticity model is proposed, in which the stress is the sum of two contributions, local and nonlocal, respectively governed by the standard elastic moduli tensor and the (symmetric positive-definite) nonlocal stiffness tensor. The inhomogeneities of the elastic moduli and of the internal length are conjectured to be each the cause of additional attenuation effects upon the long distance particle interactions. The increased attenuation effects are accounted for by means of the standard attenuation function, but with the standard spatial distance replaced by a suitably larger equivalent distance, and with the spatially variable internal length replaced by the largest value within the domain. Formulae for the computation of the equivalent distance are heuristically suggested and illustrated with numerical examples. The solution uniqueness of the continuum boundary-value problem is proven and the related total potential energy principle given and employed for possible nonlocal-FEM discretizations. A bar in tension is considered for a few numerical applications, showing perfect numerical stability, provided the free energy potential is positive definite.  相似文献   

14.
The effect of length scale on buckling behavior of a single-layer graphene sheet embedded in a Pasternak elastic medium is investigated using a nonlocal Mindlin plate theory. An explicit solution is extracted for the buckling loads of graphene sheet and the influence of the nonlocal parameter and aspect ratio on dimensionless buckling loads is presented. It is found that the nonlocal assumptions exhibit larger buckling loads and stiffness of elastic medium in comparison to classical plate theory.  相似文献   

15.
Based on viscoelastic Kelvin model and nonlocal relationship of strain and stress, a nonlocal constitutive relationship of viscoelasticity is obtained and the strain response of a bar in tension is studied. By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form solution of strain field of the bar is obtained. The creep process of the bar is presented. When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity.  相似文献   

16.
Based on viscoelastic Kelvin.model and:nonlocal relationship of strain and stress, a nonlocal constitutive relationshila of viscoelasticity is obtained and the strain response of a bar in tension is studied, By transforming governing equation of the strain analysis into Volterra integration form and by choosing a symmetric exponential form of kernel function and adapting Neumann series, the closed-form s.olution of strain field of the bar is obtained.: The creep process of the bar is presented: When time approaches infinite, the strain of bar is equal to the one of nonlocal elasticity  相似文献   

17.
The static and dynamic behaviour of a nonlocal bar of finite length is studied in this paper. The nonlocal integral models considered in this paper are strain-based and relative displacement-based nonlocal models; the latter one is also labelled as a peridynamic model. For infinite media, and for sufficiently smooth displacement fields, both integral nonlocal models can be equivalent, assuming some kernel correspondence rules. For infinite media (or finite media with extended reflection rules), it is also shown that Eringen's differential model can be reformulated into a consistent strain-based integral nonlocal model with exponential kernel, or into a relative displacement-based integral nonlocal model with a modified exponential kernel. A finite bar in uniform tension is considered as a paradigmatic static case. The strain-based nonlocal behaviour of this bar in tension is analyzed for different kernels available in the literature. It is shown that the kernel has to fulfil some normalization and end compatibility conditions in order to preserve the uniform strain field associated with this homogeneous stress state. Such a kernel can be built by combining a local and a nonlocal strain measure with compatible boundary conditions, or by extending the domain outside its finite size while preserving some kinematic compatibility conditions. The same results are shown for the nonlocal peridynamic bar where a homogeneous strain field is also analytically obtained in the elastic bar for consistent compatible kinematic boundary conditions at the vicinity of the end conditions. The results are extended to the vibration of a fixed–fixed finite bar where the natural frequencies are calculated for both the strain-based and the peridynamic models.  相似文献   

18.
In this article, the theory of nonlocal asymmetric quasicontinuum is developed on the basis of the atomic lattice model and theory of generalized function. The physico-mechanical model of the asymmetric stress is also discussed.  相似文献   

19.
将二维非局部线弹性理论引入到Hamilton体系下,基于变分原理推导得出了二维线弹性理论的对偶方程和相应的边界条件.在分析验证对偶方程的准确性的基础上,该套方法被应用于二维弹性平面波问题的求解.将精细积分与扩展的W-W算法相结合在Hamilton体系下建立了求解平面Rayleigh波的数值算法.从推导到计算的保辛性确保了辛体系非局部理论与算法的准确性.通过对不同算例的数值计算,分析和对比了非局部理论方法与传统局部理论方法的差别,并进一步指出了该套算法的适用性和优势所在.  相似文献   

20.
A thermodynamically consistent formulation of nonlocal damage in the framework of the internal variable theories of inelastic behaviours of associative type is presented. The damage behaviour is defined in the strain space and the effective stress turns out to be additively splitted in the actual stress and in the nonlocal counterpart of the relaxation stress related to damage phenomena. An important advantage of models with strain-based loading functions and explicit damage evolution laws is that the stress corresponding to a given strain can be evaluated directly without any need for solving a nonlinear system of equations. A mixed nonlocal variational formulation in the complete set of state variables is presented and is specialized to a mixed two-field variational formulation. Hence a finite element procedure for the analysis of the elastic model with nonlocal damage is established on the basis of the proposed two-field variational formulation. Two examples concerning a one-dimensional bar in simple tension and a two-dimensional notched plate are addressed. No mesh dependence or boundary effects are apparent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号