首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The problem considered is a mode Ⅲ crack lying parallel to the interface of an exponential-type functional graded material (FGM) strip bonded to a linear-type FGM substrate with infinite thickness. By applying the Fourier integral transform, the problem was reduced as a Cauchy singular integral equation with an unknown dislocation density function. The collocation method based on Chebyshev polynomials proposed by Erdogan and Gupta was used to solve the singular integral equation numerically. With the numerical solution, the effects of the geometrical and physical parameters on the stress intensity factor (SIF) were analyzed and the following conclusions were drawn: (a) The region affected by the interface or free surface varies with the material rigidity, and higher material rigidity will lead to bigger affected region. (b) The SIF of the crack in the affected region and parallel to the micro-discontinuous interface is lower than those of the weak discontinuous cases. Reducing the weak-discontinuity of the interface will be beneficial to decrease the SIF of the interface-parallel crack in the region affected by the interface. (c) The effect of the free surface on SIF is more remarkable than that of the interface, and the latter is still more notable than that of the material rigidity. When the effects of the interface and free surface are fixed, increase of the material rigidity will enhance the value of SIF.  相似文献   

2.
Prestressed composite patch bonded on cracked steel section is a promising technique to reinforce cracked details or to prevent fatigue cracking on steel structural elements. It introduces compressive stresses that produce crack closure effect. Moreover, it modifies the crack geometry by bridging the crack lips and reduces the stress range at crack tip. Fatigue tests were performed on notched steel plate reinforced by CFRP strips as a step toward the validation of crack patching for fatigue life extension of riveted steel bridges. A debond crack in the adhesive–plate interface was observed by optical technique. Debond crack total strain energy release rate is computed by the modified virtual crack closure technique. A parametric analysis is performed in order to investigate the influence of some design parameters such as the composite patch Young’s modulus, the adhesive thickness and the pretension level on the adhesive–plate interface debond.  相似文献   

3.
The slip lines at the tip of a mode I crack are analyzed by using the Wiener–Hopf technique within the scope of a plane (plane-strain) static problem of elastic theory. The crack terminates at the interface with a corner point between two isotropic media. The slip lines are located at the interface. They simulate the plastic zone near the crack tip in a piecewise-homogeneous quasibrittle body in the case where the contacting materials are much stiffer than the more plastic bonding material.  相似文献   

4.
Edge-cracked stiffened panels analyzed by caustics   总被引:3,自引:0,他引:3  
Externally bonded composite patches have been proven to be an effective method for repairing damaged aircraft structural components. They are ease in application and provide excellent in-service performance. The major function of a repair is to reduce the stress intensity factor at the crack tip. Calculation of stress intensity factor of a repaired crack has been performed by analytical and numerical methods. However, these methods are based on simplifying assumptions regarding material behavior and repair conditions. In the present paper an experimental determination of mode-I stress intensity factor (SIF), KI, at the tip of an edge-crack or a V-notch reinforced with double bonded strips or with compression pre-stresses applied along the crack surfaces is undertaken by using the optical method of caustics. This method is simple in its application and has successfully been used for the solution of a host of crack problems of engineering importance.  相似文献   

5.
This paper presents an analysis of the torsion of a solid or annular circular cylinder consisting of nonlinear material in the form of an elastic matrix with embedded unidirectional elastic fibers parallel to the cylinder axis. The specific class of composite considered is one for which nonlinear fiber-matrix interface slip is captured by uniform cohesive zones of vanishing thickness. Previous work on the effective antiplane shear response of this material leads to a stress–strain relation depending on the interface slip together with an integral equation governing its evolution. Here, we obtain an approximate single mode solution to the integral equation and utilize it to solve the torsion problem. Equations governing the radial distributions of shear stress and interface slip are obtained and formulae for torque–twist rate are presented. The existence of singular surfaces, i.e., surfaces across which the slip and the shear stress experience jump discontinuities are analyzed in detail. Specific results are presented for an interface force law that allows for interface failure in shear.  相似文献   

6.
In this paper, a numerical model developed for the analysis of a cylindrical element of matrix containing a single fiber is presented. A ring-shaped crack is assumed at interface of fiber and matrix. Both layers in the model are bonded perfectly with the exception of the crack faces. Contact elements, which have bonded feature, are used between fiber and matrix. Displacement correlation method is used to calculate opening-mode and sliding-mode stress intensity factors. These results obtained from the analysis help to understand the debonding phenomenon between fiber and matrix interface. Effects of the mechanical properties of fiber and matrix on direction of crack propagation are also discussed.  相似文献   

7.
This paper is concerned with the axisymmetrical elastic fields caused by an ellipsoidal inclusion with a slipping interface which undergoes a uniform eigenstrain. The problem is solved under a revolving ellipsoidal coordinate with the aid of Papkovich-Neuber general dipacement formula. In contrast to the perfectly bonded interface, when the interface between the inclusion and the matrix cannot sustain shear stress, and is free to slip, the solution cannot be expressed in closed form and involves infinite series. Therefore, the results are illustrated by numerical examples.  相似文献   

8.
An eigenfunction expansion method is presented to obtain three-dimensional asymptotic stress fields in the vicinity of the front of a penny shaped discontinuity, e.g., crack, anticrack (infinitely rigid lamella), etc., subjected to the far-field torsion (mode III), extension/bending (mode I) and sliding shear/twisting (mode II) loadings. Five different discontinuity-surface boundary conditions are considered: (i) penny shaped crack, (ii) penny shaped anticrack or perfectly bonded thin rigid inclusion, (iii) penny shaped thin transversely rigid inclusion (frictionless planar slip permitted), (iv) penny shaped thin rigid inclusion in part perfectly bonded, the remainder with frictionless slip, and (v) penny shaped thin rigid inclusion alongside penny shaped crack. The computed stress singularity for a penny shaped anticrack is the same as that of the corresponding crack. The main difference is, however, that all the stress components at the circular tip of an anticrack depend on Poisson’s ratio under modes I and II.  相似文献   

9.
In this study, the dynamic response of a coated piezoelectric strip containing a crack vertical to the interfaces under normal impact load is considered. Based on the superposition principle and the integral transform techniques, the solution in the Laplace transformed plane is obtained in terms of a singular integral equation. The order of stress singularity around the tip of the terminated crack is also obtained. The singular integral equation is solved by using the Gauss–Jacobi integration formula, and the numerical Laplace inversion is then carried out to obtain the resulting dynamic stress and electric displacement intensities. The effects of the material properties and the geometric parameters on the dynamic stress intensity factor and the dynamic energy density factors are shown graphically.  相似文献   

10.
In order to evaluate the strength of fiber-reinforced composites, there is first the need to investigate the interfacial debonding and the pull-out of fibers in a fractured composite with intact fibers. This type of problem in crack bridging has been investigated by several authors based on different models and assumptions [1–7]. In this study, we will consider a three-dimensional model of a single fiber of finite length bonded by a finite cylindrical matrix with an initial crack existing in a portion of the interface. In the model, one end of the cylinder is so constrained that the axial component of displacement vanishes. A tensile stress is applied to the fiber at the other end. The aim is to determine the pull-out of the fiber and the critical condition for interfacial debonding. Both the fiber and the matrix are treated as elastic materials. Analysis is made based on a method using Papkovich-Neuber displacement potential functions for the problem of an elastic solid subjected to axisymmetrical boundary conditions. Solutions are found by means of the technique of trigonometrical series. Effects of initial misfit strains and frictional sliding between the fiber and the matrix over the interfacial crack are also included in the study.  相似文献   

11.
12.
Antiplane shear deformation of several edge-cracked geometries is considered. Analytical expressions are derived for the mode III stress intensity factor (SIF) of circular shafts with edge cracks, bonded half planes containing an interfacial edge crack, bonded wedges with an interfacial edge crack and also DCB’s. The results are extracted for simple isotropic materials as well as anisotropic materials and also bonded dissimilar materials and it is shown that the same expressions are obtained for the SIF under the same geometries but with different above-mentioned material properties. Different boundary conditions are assumed and the SIF relations are derived in each case. As the special cases, the SIF’s of the two bonded quarter planes containing an edge crack at the interface and infinite strip with a semi-infinite edge crack are extracted which coincide with the results cited in the literature.  相似文献   

13.
Novel interface deformable bi-layer beam theory is developed to account for local effects at crack tip of bi-material interface by modeling a bi-layer composite beam as two separate shear deformable sub-layers with consideration of crack tip deformation. Unlike the sub-layer model in the literature in which the crack tip deformations under the interface peel and shear stresses are ignored and thus a “rigid” joint is used, the present study introduces two interface compliances to account for the effect of interface stresses on the crack tip deformation which is referred to as the elastic foundation effect; thus a flexible condition along the interface is considered. Closed-form solutions of resultant forces, deformations, and interface stresses are obtained for each sub-layer in the bi-layer beam, of which the local effects at the crack tip are demonstrated. In this study, an elastic deformable crack tip model is presented for the first time which can improve the split beam solution. The present model is in excellent agreements with analytical 2-D continuum solutions and finite element analyses. The resulting crack tip rotation is then used to calculate the energy release rate (ERR) and stress intensity factor (SIF) of interface fracture in bi-layer materials. Explicit closed-form solutions for ERR and SIF are obtained for which both the transverse shear and crack tip deformation effects are accounted. Compared to the full continuum elasticity analysis, such as finite element analysis, the present solutions are much explicit, more applicable, while comparable in accuracy. Further, the concept of deformable crack tip model can be applied to other bi-layer beam analyses (e.g., delamination buckling and vibration, etc.).  相似文献   

14.
The mechanical model was established for the anti-plane fracture problem of a functionally graded coating–substrate system with a coating crack inclined to the weak/micro-discontinuous interface. The Cauchy singular integral equation for the crack was derived using Fourier integral transform, and the Lobatto–Chebyshev collocation method put up by Erdogan and Gupta was used to get its numerical solution. Finally, the effects of the weak/micro-discontinuity of the interface on SIFs were analyzed, the “affected regions” corresponding to the two crack tips have been obtained and their engineering significance was discussed. It was indicated that, for the crack tip in the corresponding “affected region”, to reduce the weak-discontinuity of the interface and to make the interface micro-discontinuous are the two effective ways to reduce the SIF, and the latter way always has more remarkable SIF-reduction effect. For the crack tip outside the “affected region”, its SIF is mainly influenced by material stiffness, and to prevent such a tip from growing toward the interface “softer coating and stiffer substrate” is a more advantageous combination than “stiffer coating and softer substrate”.  相似文献   

15.
Summary  An interface crack problem is investigated under various assumptions on an interface between two elastic materials. The interface is modeled by an additional third structure (thin elastic wedge of differing elastic properties) matching the bonded materials, or by introducing special boundary conditions on the crack line ahead. The main emphasis of the paper is placed on a comparison of the asymptotic expansion of the elastic solutions near the crack tip obtained for the different models. In particular, the behaviour of the stress singularity exponent and the generalized SIF are discussed. Numerical examples are presented. Received 16 August 2000; accepted for publication 26 May 2001  相似文献   

16.
An internal crack located within a functionally graded material (FGM) strip bonded with two dissimilar half-planes and under an anti-plane load is considered. The crack is oriented in an arbitrary direction. The material properties of strip are assumed to vary exponentially in the thickness direction and two half-planes are assumed to be isotropic. Governing differential equations are derived and to reduce the difficulty of the problem dealing with solution of a system of singular integral equations Fourier integral transform is employed. Semi closed form solution for the stress distribution in the medium is obtained and mode III stress intensity factor (SIF), at the crack tip is calculated and its validity was verified. Finally, the effects of nonhomogeneous material parameter and crack orientation on the stress intensity factor are studied.  相似文献   

17.
本文在旋转椭球坐标系下,利用Papkovich—Neuber位移通解求解了具有光滑界面椭球夹杂由于均匀的特征应变引起的轴对称弹性场,与理想界面不同,在夹杂与基体界面不能经受剪应力而可自由滑动的情况下,解答只能是无穷级数形式,因此文中给出了数值算例。  相似文献   

18.
Under the hypothesis that all the perfectly plastic stress components at a orach tip are the functions of θ only, making use of yield conditions and equilibrium equations. we derive the generally analytical expressions of the perfectly plastic stress field at a crack tip. Applying these generally analytical expressions to the concrete cracks, the analytical expressions of perfectly plastic stress fields at the tips of Mode Ⅰ Mode Ⅱ, Mode Ⅲ and Mixed Mode Ⅰ-Ⅱ cracks are obtained.  相似文献   

19.
We study the deformation of a crack between a soft elastomer and a rigid substrate with finite interfacial slippage. It is assumed that slippage occurs when the interfacial shear traction exceeds a threshold. This leads to a slip zone ahead of the crack tip where the shear traction is assumed to be equal to the constant threshold. We perform asymptotic analysis and determine closed-form solutions describing the near-tip crack opening displacement and the corresponding stress distributions. These solutions are consistent with numerical results based on finite element analysis. Our results reveal that slippage can significantly affect the deformation and stress fields near the tip of the interface crack. Specifically, depending on the direction of slippage, the crack opening profile may appear more blunted or sharpened than the parabola arising from for the case of zero interfacial shear traction or free slippage. The detailed crack opening profile is determined by the constant shear traction in the slip zone. More importantly, we find that the normal stress perpendicular to the interface can increase or decrease when slippage occurs, depending on the direction of slippage and the shear traction in the slip zone.  相似文献   

20.
裂纹垂直于双相介质界面时的应力强度因子   总被引:2,自引:0,他引:2  
本文利用J积分与应力强度因子的关系,采用有限元数值方法研究了当裂纹与双相介质的界面垂直时,其裂纹的近界面端和远界面端的应力强度因子随双相介质参数和裂纹端部到界面的距离的变化规律,同时还分析了当边裂纹逐渐扩展时,应力强度因子的变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号