首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
李锡夔  张俊波  张雪 《计算力学学报》2011,28(6):813-820,832
基于经典Cauchy连续体的Hill定理,在平均场理论的框架下导出了梯度增强Cosserat连续体细、宏观均匀化方法的广义Hill定理。在梯度增强Cosserat连续体中,不仅宏观样条点上的应变和应力张量,而且它们的梯度均作用于与该样条点相关联的细观表征元(RVE)。依据此广义Hill定理,对梯度增强Cosserat连...  相似文献   

2.
Void growth and coalescence in single crystals are investigated using crystal plasticity based 3D finite element calculations. A unit cell involving a single spherical void and fully periodic boundary conditions is deformed under constant macroscopic stress triaxiality. Simulations are performed for different values of the stress triaxiality, for different crystal orientations, and for low and high work-hardening capacity. Under low stress triaxiality, the void shape evolution, void growth, and strain at the onset of coalescence are strongly dependent on the crystal orientation, while under high stress triaxiality, only the void growth rate is affected by the crystal orientation. These effects lead to significant variations in the ductility defined as the strain at the onset of coalescence. An attempt is made to predict the onset of coalescence using two different versions of the Thomason void coalescence criterion, initially developed in the framework of isotropic perfect plasticity. The first version is based on a mean effective yield stress of the matrix and involves a fitting parameter to properly take into account material strain hardening. The second version of the Thomason criterion is based on a local value of the effective yield stress in the ligament between the voids, with no fitting parameter. The first version is accurate to within 20% relative error for most cases, and often more accurate. The second version provides the same level of accuracy except for one crystal orientation. Such a predictive coalescence criterion constitutes an important ingredient towards the development of a full constitutive model for porous single crystals.  相似文献   

3.
The weak point of the generalized self-consistent method (GSCM) is that its solution for the effective shear moduli involves determining the complicated displacement and strain fields in constitutents. Furthermore, the effective moduli estimated by GSCM cannot be expressed in an explicit form. Instead of following the procedure of GSCM, in this paper a generalized self-consistent Mori-Tanaka method (GSCMTM) is developed by means of Hill's interface condition and the assumption that the strain in the inclusion is uniform. A comparison with the existing theoretical and experimental results shows that the present GSCMTM is sufficiently accurate to predict the effective moduli of the coated inclusion-based composite materials. Moreover, it is interesting to find that the application of Hill's interface condition in volumetric domain is equivalent to the Mori-Tanaka average field approximation. This project was supported by the National Natural Science Foundation of China and China Postdoctoral Science Foundation.  相似文献   

4.
The paper is devoted to the study of common features in regular and strange behavior of the three classic dissipative softening type driven oscillators: (a) twin-well potential system, (b) single-well potential unsymmetric system and (c) single-well potential symmetric system.Computer simulations are followed by analytical approximations. It is shown that the mathematical techniques and physical concepts related to the theory of nonlinear oscillations are very useful in predicting bifurcations from regular, periodic responses to cross-well chaotic motions or to escape phenomena. The approximate analysis of periodic, resonant solutions and of period doubling or symmetry breaking instabilities in the Hill's type variational equation provides us with closed-form algebraic simple formulae; that is, the relationship between critical system parameter values, for which strange phenomena can be expected.  相似文献   

5.
6.
QUASI-PRINCIPALAXISMETHODINFINITEDEFORMATIONZhengQianshui(郑泉水)(DepartmentofEngineeringMechanics,QinghuaUniversity,Beijing1000...  相似文献   

7.
In this paper, two kinds of tensor equations are studied and their solutions are derived in general cases. Then, some compact basis-free representations for the time rate and conjugate stress of logarithmic strain tensors are proposed using six different methods. In addition, relations between the coefficients in these expressions are disclosed. Subsequently, all these basis-free expressions given in this paper are validated for the cases of distinct stretches and double coalescence, respectively.  相似文献   

8.
The strain energy density criterion due to Sih is used to predict fracture loads of two thin plates subjected to large elastic-plastic deformation. The prediction is achieved with a finite element analysis which is based on Hill's variational principle for incremental deformations capable of solving gross yielding problems involving arbitrary amounts of deformation. The computed results are in excellent agreement with those obtained in Sih's earlier analysis and with an experimental observation.  相似文献   

9.
Based on the general solution given to a kind of linear tensor equations, the spin of a symmetric tensor is derived in an invariant form. The result is applied to find the spins of the left and the right stretch tensors and the relation among different rotation rate tensors has been discussed. According to work conjugacy, the relations between Cauchy stress and the stresses conjugate to Hill's generalized strains are obtained. Particularly, the logarithmic strain, its time rate and the conjugate stress have been discussed in detail. These results are important in modeling the constitutive relations for finite deformations in continuum mechanics. The project is supported by the National Natural Science Foundation of China and the Chinese Academy of Sciences (No. 87-52).  相似文献   

10.
We present micromechanical finite element results that quantify coalescence effects based upon temperature and different spatial arrangements of voids. We propose a critical intervoid ligament distance (ILD) to define void coalescence that is derived from micromechanical simulations in which void volume fraction evolves as a function of strain. Several parameters were varied using the temperature and strain rate internal variable plasticity model of Bammann–Chiesa–Johnson to determine the coalescence effects. The parameters include two types of materials with different work hardening rates (304L stainless steel and 6061T6 aluminum), three different temperatures (298, 400, and 600 K), several boundary conditions (force and displacement: uniaxial, plane strain, and biaxial), type of element used (plane strain and axisymmetric), different ILDs, and the number of voids (one and two void configurations). The present study provides a basis for macroscale modeling of coalescence which is briefly discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号