首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
Inertial stability of a vertical shear layer (Stewartson E1/4-layer) on the sidewall of a cylindrical tank with respect to stationary axisymmetric perturbations is inverstigated by means of a linear theory. The stability is determined by two non-dimensional parameters, the Rossby number Ro = U/2ΩL and Ekman number E = vH2, where U and L = (E/4)1/4H are the characteristic velocity and width of the shear layer, respectively, Ω the angular velocity of the basic rotation, v the kinematic viscosity and H the depth of the tank.

For a given Ekman number, the flow is more unstable for larger values of the Rossby number. For E = 10−4, which is a typical value of the Ekman number realized in rotating tank experiments, the critical Rossby number Roc for instability and the critical axial wavenumber mc non-dimensionalized by L−1 are found to be 1.3670 and 8.97, respectively. The value of Roc increases and that of mc decreases with increasing E.  相似文献   


2.
A second order non-linear ordinary differential equation satisfied by a homogeneous function of u and v where u is a solution of the linear equation ÿ + p(t)ÿ + r(t)y = 0 and v = ωu, ω being an arbitrary function of t, is obtained. Defining ω suitably in two specific cases, solutions are obtained for a non-linear equation of the form ÿ + p(t)ÿ + q(t)y = μÿ2y−1 + f(t)yn where μ ≠ 1, n≠ 1. Applying our results, some classes of equations of the above type possessing solutions involving two or one or no arbitrary constants are derived. Some illustrative examples are also discussed.  相似文献   

3.
This paper reports the results of a study on temperature inhomogeneities conducted on a thermal plume by using ultrasound scattering as a non-intrusive measurement technique. The plume rises from a metallic disk which can be heated up to 800 °C. The working fluid is air at atmospheric pressure. In the measurement technique, an incoming ultrasound wave is emitted towards the thermal plume. The incident wave is scattered because of non-linear couplings with the flow instabilities present in the measurement region. The scattered wave carries information about those flow instabilities. The technique allows for the retrieving of this information. The shape of the obtained spectrum of temperature fluctuations as a function of wave vector modulus is consistent with previous theoretical analysis. Three qualitatively different regions were identified: first, a production region characterized by a q2 law; secondly, a region with behavior as per q−3 associated with a buoyancy region and; finally, a dissipation region associated with a q−7 law. These spectral regions characterize the energy transfers mechanisms among the length scales of flow investigated here. A coefficient of anisotropy γ was defined to analyze anisotropic features of the flow.  相似文献   

4.
Correlation dimension of paddy soil strength in China   总被引:2,自引:0,他引:2  
Embedding phase space Rm is reconstructed from the spatial series g(x) of cone indices measured in two paddy fields near Nanjing, China. The correlation dimension D2m for each field is derived from the correlation integral Cm(r) and the neighbours distance r in log–log scale. Results show D2m increases as m, and tends to 5.0, which expresses the estimate of correlation dimension for each soil strength profile measured.  相似文献   

5.
The group properties and the associated Lie algebra are developed for the subject quasilinear wave equation, for arbitrary f[fεC2(R), f > 0, f ≠ 0]. From the resulting information sets of explicit invariant solutions are constructed for wave propagation in gases and for the transonic equation.  相似文献   

6.
John P. Boyd 《Wave Motion》1995,21(4):311-330
“Weakly nonlocal” solitary waves differ from ordinary solitary waves by possessing small amplitude, oscillatory “wings” that extend indefinitely from the large amplitude “core”. Such generalized solitary waves have been discovered in capillarygravity water waves, particle physics models, and geophysical Rossby waves. In this work, we present explicit calculations of weakly nonlocal envelope solitary waves. Each is a sine wave modulated by a slowly-varying “envelope” that itself propagates at the group velocity. Our example is the cubically nonlinear Klein-Gordon equation, which is a model in particle physics (φ4 theory) and in electrical engineering (with a different sign). Both cases have weakly nonlocal“breather” solitons. Via the Lorentz invariance, each breather generates a one-parameter family of nonlocal envelope solitary waves. The φ4 breather was described and calculated in earlier work. This generates envelope solitons which have “wings” that are (mostly) proportional to the second harmonic of the sinusoidal factor. In this article, we calculate breathers and envelope solitary waves for the second, electrical engineering case. Since these, unlike the φ4 waves, contain only odd harmonics, the envelope solitary waves are nonlocal only via the third harmonic.  相似文献   

7.
Flow of an incompressible viscous fluid contained in a cylindrical vessel (radius R, height H) is considered. Each of the cylinder endwalls is split into two parts which rotate steadily about the central axis with different rotation rates: the inner disk (r < r1) rotating at Ω1, and the outer annulus (r1 < r < R) rotating at Ω2. Numerical solutions to the axisymmetric Navier-Stokes equations are secured for small system Ekman numbers E ( v/(ΩH2)). In the linear regime, when the Rossby number Ro , the numerical results are shown to be compatible with the theoretical prediction as well as the available experimental measurements. Emphasis is placed on the results in the nonlinear regime in which Ro is finite. Details of the structures of azimuthai and meridional flows are presented by the numerical results. For a fixed Ekman number, the gross features of the flow remain qualitatively unchanged as Ro increases. The meridional flows are characterized by two circulation cells. The shear layer is a region of intense axial flow toward the endwall and of vanishing radial velocity. The thicknesses of the shear layer near r = r1 and the Ekman layer on the endwall scale with E and E , respectively. The numerical results are consistent with these scalings.  相似文献   

8.
This paper presents the results of an experimental investigation on the near field of a tip vortex generated by a blade at moderate incidence. The experiments were conducted at Re=15 000 and the boundary layer over the blade separated around midchord on the upper surface. Laser-Doppler measurements of the turbulent flow (Tu=1.5%) were performed at various stations downstream of the blade. The three components of the mean velocity field and turbulent attributes were quantified at cross-planes, characterizing both the blade wake and the tip vortex structure. This allowed the analysis of the rollup and initial stages of decay of the tip vortex in the light of known theories and models. The axial velocity defect at the center of the vortex core evolved as x−1 log x, without displaying any significant outgrowth imposed by the separated flow upstream. Momentum balances were also carried out at a station downstream to the conclusion of vortex rollup. The approximate axisymmetry of the flow field in the trailing vortex was used to formulate the balances in a cylindrical coordinate system. Among other observations, it was seen that an adverse axial pressure gradient developed in the vortex core, which reinforced the tenacity of the axial velocity defect. In contrast, an area influenced by a favorable pressure gradient was found outside the core.  相似文献   

9.
Possible stable subharmonic solutions of the equation
ÿ − k(1 + 2cyy2)ÿ + Y = bkμ cos μt, c > 0
, klarge, are discussed by the techniques used by J.E. Littlewood for van der Pol's equation in Acta Math. 97 (1957), that is the case of the above equation with c = 0 and
, k large. Their variation as c increases is also considered briefly.  相似文献   

10.
The constructions made of bars and plates with holes, openings and bulges of various forms are widely used in modern industry. By loading these structural elements with different efforts, there appears concentration (accumulation) of stress whose values sometimes exceeds the admissible one. The durability of the given element is defined according to the quantity of these stresses. Since the failure of details and construction itself begins from the place where the stress concentration has the greatest value.

Therefore the exact determination of stress distribution in details (bars, plates, beams) is of great scientific and practical interest and is one of the important problems of the solid fracture.

Compound details (when the nucleus of different material is soldered to the hole) are often used to decrease the stress concentration.

In the present paper, we study a stress–strain state of polygonal plate weakened by a central elliptic hole with two linear cracks info which a rigid nucleus (elliptic cylinder with two linear bulges) of different material was put in (soldered) without preload.

The problem is solved by a complex variable functions theory stated in papers [Theory of Elasticity, Higher School, Moscow, 1976, p. 276; Plane Problem of Elasticity Theory of Plates with Holes, Cuts and Inclusions, Publishing House Highest School, Kiev, 1975, p. 228; Bidimensional Problem of Elasticity Theory, Stroyizdat, Moscow, 1991, p. 352; Science, Moscow (1996) 708; MSB AH USSR OTH 9 (1948) 1371].

Kolosov–Mushkelishvili complex potential (z) and ψ(z) satisfying the definite boundary conditions are sought in the form of sums of functional series.

After making several strict mathematical transformations, the problem is reduced to the solution of a system of linear algebraic equations with respect to the coefficients of expansions of functions (z) and ψ(z).

Determining the values of (z) and ψ(z), we can find the stress components σr, σθ and τrθ at any point of cross-section of the plate and nucleus on the basis of the known formulae. The obtained solution is illustrated by numerical example.

Changing the parameters A1, m1, e, A2, and m2 we can get the various contour plates.

For example, if we assume m1=0, A1=r, then the internal contour of L1 becomes the circle of radius r with two rectilinear cracks (for the nucleus––a rectilinear bulges).

Further, if we assume a small semi-axis of the ellipse b1 to be equal to zero (b1=0), then a linear crack becomes the internal contour of L1 (and the nucleus becomes the linear rigid inclusion made of other material). For m2=0; A2=R, the external contour L2 turns into the circle of radius R.

The obtained method of solution may be applied and in other similar problems of elasticity theory; tension of compound polygonal plate, torsion and bending of compound prismatic beams, etc.  相似文献   


11.
The experimental data for heat transfer during nucleate pool boiling of saturated liquid metals on plain surfaces are surveyed and a new correlation is presented. The correlation is h = Cq0.7prm, where C and m are, respectively, 13.7 and 0.22 pr < 0.001 and 6.9 and 0.12 for pr > 0.001 (h is in W/m2 K and q in W/m2). This correlation has been verified with data for K, Na, Cs, Li, and Hg from 17 sources over the reduced pressure (pr) range of 4.3 × 10−6 to 1.8 × 10−2. The correlation of Subbotin et al. was found unsatisfactory, but a modified correlation was developed that also gives good agreement with most of the data.  相似文献   

12.
On the pressure of cavitation bubbles   总被引:1,自引:0,他引:1  
Shock wave emission upon the collapse of a cavitation bubble attached to a rigid wall is investigated using high-speed photography with 200 million frames/s and 5 ns exposure time. At a distance of 68 μm from the bubble wall, the shock pressure is 1.3 ± 0.3 GPa. The shock pressure decays proportionally to r−1.5 with increasing distance from the bubble. An estimation of the peak pressure at the bubble wall reveals a pressure of about 8 GPa. A major part of the shock wave energy is dissipated within the first 100 μm from the bubble wall.  相似文献   

13.
Experiments were carried out to measure the base pressure distribution of a flow field induced by a potential vortex with its axis normal to a stationary disk. The center base pressure coefficient of the vortex, C0(0), was found to be proportional to Reynolds number from Re = 2.0 × 103 to Re > 2.5 × 104, where Re is based on the disk radius and azimuthal velocity at the disk edge. This behavior of C0(0) is at variance with the experimental results of Phillips (Phys. Fluids, 27, 2215, 1984) and Khoo (M. Eng. Thesis, Natl. Univ. Singapore, 1984), which showed vastly different trends depending on Re. Plausible reasons are suggested for the apparent discrepancies observed. Finally, the extent of the effusing core at the center, r1 (taken to be the radial position where departure from the outer potential flow took place), was found to be proportional to Re−1/2 for all Re values considered.  相似文献   

14.
G. A. Kriegsmann   《Wave Motion》2002,36(4):457-472
A variational technique is employed to compute approximate propagation constants for electromagnetic waves in a dielectric structure which is periodic in the XY plane and translationally invariant in the Z-direction. The fundamental cell, in the periodic structure, is composed of a pore and the surrounding host media. The pore is a circle of radius R0 filled with a dielectric ε1 and the host dielectric characterized by ε2. The size of the cell is characterized by the length A which is R0.

Two limiting cases are considered. In the first, the pore size is assumed to be much smaller than the wavelength; this limit is motivated by microwave heating of porous material. The approximate propagation constants are explicitly computed for this case and are shown to depend upon the two dielectric constants, the relative areas of the two regions in the cell, and on a modal number. They are not given by a simple mixture formula.

In the second limit, the pore size is taken to be of the same order as the wavelength; this limit is motivated by the propagation of light in a holey fiber. In this case our argument directly yields the dispersion relationship recently derived by Ferrando et al. [Opt. Lett. 24 (1999) 276], using intuitive and physical reasoning. Thus, our method puts theirs into a mathematical framework from which other approximations might be deduced.  相似文献   


15.
Numerical prediction of locally forced turbulent boundary layer   总被引:3,自引:0,他引:3  
An unsteady numerical simulation was performed to analyze flow structure behind a local suction/blowing in a flat-plate turbulent boundary layer. The local forcing was given to the boundary layer flow by means of a sinusoidally oscillating jet. A version of the unsteady k––fμ model [Fluid Dyn. Res. 26 (6) (2000) 421] was employed. The Reynolds number based on the momentum thickness was about Reθ=1700. The forcing frequency was varied in the range 0.011f+0.044 with a fixed forcing amplitude Ao=0.4. The predicted results were compared and validated with the experimental data. It was shown that the unsteady locally forced boundary layer flow is predicted well by the k––fμ model. The time-dependent numerical flow visualizations were demonstrated during one period of the local forcing. The effect of the pitch angle of local forcing on the reduction of skin friction was examined.  相似文献   

16.
THEUNIQUENESSANDEXISTENCEOFSOLUTIONOFTHECHABACTERISTICPROBLEMONTHEGENERALIZEDKdVEQUATIONLiWen-shen(李文深)(NortheastForestryUniv...  相似文献   

17.
The effect of the aspect ratio on natural convection in water subjected to density inversion has been investigated in this study. Numerical simulations of the two-dimensional, steady state, incompressible flow in a rectangular enclosure with a variety of aspect ratios, ranging from 0.125 to 100, have been accomplished using a finite element model. Computations cover Rayleigh numbers from 103 to 106. Results reveal that the aspect ratio, A, the Rayleigh number, Ra, and the density distribution parameter, R, are the key parameters to determine the heat transfer and fluid flow characteristics for density inversion fluids in an enclosure. A new correlation for predicting the maximum mean Nusselt number is proposed in the form of , with the constants a and b depending on density distribution number R. It is demonstrated that the aspect ratio has a strong impact on flow patterns and temperature distributions in rectangular enclosures. The stream function ratio Ψinv/|Ψreg| is introduced to describe quantitatively the interaction between inversional and regular convection. For R=0.33, the density inversion enhancement is observed in the regime near A=3.  相似文献   

18.
Internal solitary waves moving over uneven bottoms are analyzed based on the reductive perturbation method, in which the amplitude, slope and horizontal lengthscale of a topography on the bottom are of the orders of , 5/2 and −3/2, respectively, where the small parameter is also a measure of the wave amplitude. A free surface condition is adopted at the top of the fluid layer. That condition contains two parameters, δ and Δ, the first of which concerns the discontinuity of the basic density between the outer layer and the inner one; the second concerns the discontinuity of the mean density between them. An amplitude equation for the disturbance of order decomposes into a Korteweg-de Vries (KdV) equation and a system of algebraic equations for a stationary disturbance around a topography on the bottom. Solitary waves moving over a localized hill are studied in a simple case where both the basic flow speed and the Brunt-Vaisalla frequency are constant over the fluid layer. For this case, the expression for the amplitude of the stationary disturbance contains singular points with respect to basic flow speed. These singularities correspond to the resonant conditions modified by the free surface condition. The advancing speeds of solitary waves are changed by the influence of bottom topography, in a case where the long internal waves propagate in the direction opposite to the basic flow, but their waveforms remain almost unchanged.  相似文献   

19.
A plane acoustic wave insonifies an infinite rough surface. The reflected field is written as an angular-spectrum representation (plane-wave expansion), with an unknown amplitude function A. It is pointed out that A must be considered as a generalized function, and not as a continuous function. Various decompositions of A are suggested and analysed. Energy considerations lead to relations between the coefficients in these decompositions, generalizing some known results for scattering by periodic surfaces (gratings). It is shown that the reflected field must include at least one propagating plane wave.  相似文献   

20.
Kumar  Sachin  Mohan  Brij  Kumar  Raj 《Nonlinear dynamics》2022,110(1):693-704

This article investigates a nonlinear fifth-order partial differential equation (PDE) in two-mode waves. The equation generalizes two-mode Sawada-Kotera (tmSK), two-mode Lax (tmLax), and two-mode Caudrey–Dodd–Gibbon (tmCDG) equations. In 2017, Wazwaz [1] presented three two-mode fifth-order evolutions equations as tmSK, tmLax, and tmCDG equations for the integrable two-mode KdV equation and established solitons up to three-soliton solutions. In light of the research above, we examine a generalized two-mode evolution equation using a logarithmic transformation concerning the equation’s dispersion. It utilizes the simplified technique of the Hirota method to obtain the multiple solitons as a single soliton, two solitons, and three solitons with their interactions. Also, we construct one-lump solutions and their interaction with a soliton and depict the dynamical structures of the obtained solutions for solitons, lump, and their interactions. We show the 3D graphics with their contour plots for the obtained solutions by taking suitable values of the parameters presented in the solutions. These equations simultaneously study the propagation of two-mode waves in the identical direction with different phase velocities, dispersion parameters, and nonlinearity. These equations have applications in several real-life examples, such as gravity-affected waves or gravity-capillary waves, waves in shallow water, propagating waves in fast-mode and the slow-mode with their phase velocity in a strong and weak magnetic field, known as magneto-sound propagation in plasmas.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号