首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 78 毫秒
1.
 The steady mixed convection flow over a vertical wedge with a magnetic field embedded in a porous medium has been investigated. The effects of the permeability of the medium, surface mass transfer and viscous dissipation on the flow and temperature fields have been included in the analysis. The coupled nonlinear partial differential equations governing the flow field have been solved numerically using the Keller box method. The skin friction and heat transfer are found to increase with the parameters characterizing the permeability of the medium, buoyancy force, magnetic field and pressure gradient. However the effect of the permeability and magnetic field on the heat transfer is very small. The heat transfer increases with the Prandtl number, but the skin friction decreases. The buoyancy force which assists the forced convection flow causes an overshoot in the velocity profiles. Both the skin friction and heat transfer increase with suction and the effect of injection is just the reverse. Received on 21 May 1999  相似文献   

2.
Unsteady laminar mixed convection flow (combined free and forced convection flow) along a vertical slender cylinder embedded in a porous medium under the combined buoyancy effect of thermal and species diffusion has been studied. The effect of the permeability of the medium as well as the magnetic field has been included in the analysis. The partial differential equations with three independent variables governing the flow have been solved numerically using a implicit finite difference scheme in combination with the quasilinearization technique. Computations have been carried out for accelerating, decelerating and oscillatory free stream velocity distributions. The effects of the permeability of the medium, buoyancy forces, transverse curvature and magnetic field on skin friction, heat transfer and mass transfer have been studied. It is found that the effect of free stream velocity distribution is more pronounced on the skin friction than on the heat and mass transfer. The permeability and magnetic parameters increase the skin friction, but reduce the heat and mass transfer. The skin friction, heat transfer and mass transfer are enhanced due to the buoyancy forces and curvature parameter. The heat transfer is strongly dependent on the viscous dissipation parameter and the Prandtl number, and the mass transfer on the Schmidt number.  相似文献   

3.
ABSTRACT

In this paper, effects of two wires magnetic field on heat transfer and biomagnetic fluid flow in an aneurysm have been investigated using the ferrohydrodynamics model. Using the finite volume method and the SIMPLE algorithm, the governing equations have been discretised. Simulations have been carried out for both conditions of wires in the same and opposite directions and different magnetic numbers of 41 and 82. Results show that the magnetic field causes a decrease in heat transfer of blood flow towards the walls. Moreover, major energy loss or pressure drop, arising from mean wall shear stress, decreases but local or minor energy loss, arising from aneurysm vortexes, increases. Furthermore, risk factors of aneurysm rupture is decreased under the effect of the magnetic field. The effective contact surface between drug-coated magnetic nanoparticles and the aneurysm tissue may increase and residence time of drug on the cells of the region would decrease.  相似文献   

4.
The effect of MHD on the total heat transfer from a porous fin attached to a vertical isothermal surface has been investigated. The Maxwell equations have been used, and also Rosseland approximation for radiation heat transfer and Darcy model for simulating the flow in porous medium have been adapted. The governing equations are reduced to a nonlinear ODE. The fin is supposed to be an infinite fin, which is exposed to a magnetic field. The dimensionless temperature profile, and the average Nusselt number profiles have been obtained for different Rayleigh numbers and porosities. Validation is carried out by comparing the results obtained in this study with those predicted by Darcy–Brinkman–Forchheimer model.  相似文献   

5.
In an experimental study of the heat transfer from a partially ionized gas it was found that the heat flux to the wall for flow of an electrically conducting gas in a circular tube located in a magnetic field of a solenoid depends not only on the magnitude of the magnetic field but also on the field orientation [1]; with the magnetic field parallel to the velocity the heat transfer is reduced by 15%, with antiparallel orientation it is reduced by only 1% in comparison with the heat transfer without the magnetic field. No explanation for this was given either in [1] or in the subsequent discussion [2]; moreover, on the basis of the constructed equations [1] this effect cannot be obtained at all, since the solution of the equations clearly is not changed by a change of the field sign. In the following we attempt to explain this effect by the processes which take place during the development of rotational flow of an anisotropically conducting medium. The idea of the possibility of such an explanation for this effect was proposed in general form in the survey paper [3].The detailed calculation of the development of MHD flows has been made previously only for the case of a transverse magnetic field and very simple channel geometry (see, for example, the survey [3]).In all the considered problems the components of the electrical field which appeared in the motion equations were known with an accuracy to constants from symmetry considerations. Therefore, under the assumption of smallness of the induced magnetic field these problems reduced simply to the solution of the equation of motion with additional terms which are linear in the velocity. In the present paper we construct an approximate simultaneous solution of a system consisting of the motion equations and the equation for the electrical potential.  相似文献   

6.
A pool boiling heat transfer comparison among water-based magnetic fluids in the absence and presence of a magnetic field with its carrier liquid water was made. The experimental results show that the boiling heat transfer of magnetic fluid increased much in the absence of a magnetic field, and the applied magnetic field made the boiling heat transfer of magnetic fluid enhance further. The effect of a magnetic field on bubbles was analyzed. It was clarified that the nonuniform magnetic field changed the bubble departure diameter and shape during boiling.  相似文献   

7.
The steady MHD mixed convection flow of a viscoelastic fluid in the vicinity of two-dimensional stagnation point with magnetic field has been investigated under the assumption that the fluid obeys the upper-convected Maxwell (UCM) model. Boundary layer theory is used to simplify the equations of motion, induced magnetic field and energy which results in three coupled non-linear ordinary differential equations which are well-posed. These equations have been solved by using finite difference method. The results indicate the reduction in the surface velocity gradient, surface heat transfer and displacement thickness with the increase in the elasticity number. These trends are opposite to those reported in the literature for a second-grade fluid. The surface velocity gradient and heat transfer are enhanced by the magnetic and buoyancy parameters. The surface heat transfer increases with the Prandtl number, but the surface velocity gradient decreases.  相似文献   

8.
The flow of a liquid metal in a rectangular duct, subject to a strong transverse magnetic field is of interest in a number of applications. An important application of such flows is in the context of coolants in fusion reactors, where heat is transferred to a lead-lithium eutectic. It is vital, therefore, that the heat transfer mechanisms are understood. Forced convection heat transfer is strongly dependent on the flow profile. In the hydrodynamic case, Nusselt numbers and the like, have long been well characterised in duct geometries. In the case of liquid metals in strong magnetic fields (magnetohydrodynamics), the flow profiles are very different and one can expect a concomitant effect on convective heat transfer. For fully developed laminar flows, the magnetohydrodynamic problem can be characterised in terms of two coupled partial differential equations. The problem of heat transfer for perfectly electrically insulating boundaries (Shercliff case) has been studied previously (Bluck et al., 2015). In this paper, we demonstrate corresponding analytical solutions for the case of conducting hartmann walls of arbitrary thickness. The flow is very different from the Shercliff case, exhibiting jets near the side walls and core flow suppression which have profound effects on heat transfer.  相似文献   

9.
Experimental investigation is conducted to get insight into convective heat transfer features of the aqueous magnetic fluid flow over a fine wire under the influence of an external magnetic field. The convective heat transfer coefficient of the aqueous magnetic fluid flow around the heated wire is measured in both the uniform magnetic field and the magnetic field gradient. The effects of the external magnetic field strength and its orientation on the thermal behaviors of the magnetic fluids are analyzed. The experimental results show that the external magnetic field is a vital factor that affects the convective heat transfer performances of the magnetic fluids and the control of heat transfer processes of a magnetic fluid flow can be possible by applying an external magnetic field.  相似文献   

10.
The hydrodynamic and heat transfer behavior of a bed consisting of magnetic and shale oil particle admixtures under the effect of a transverse magnetic field is investigated. The phase diagram, bed void fraction are studied under wide range of the operating conditions i.e., gas velocity, magnetic field intensity and fraction of the magnetic particles. It is found that the range of the stabilized regime is reduced as the magnetic fraction decreases. In addition, the bed voidage at the onset of fluidization decreases as the magnetic fraction decreases. On the other hand, Nusselt number and consequently the heat transfer coefficient is found to increase as the magnetic fraction decreases. An empirical equation is investigated to relate the effect of the gas velocity, magnetic field intensity and fraction of the magnetic particles on the heat transfer behavior in the bed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号