首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In acid fracturing, excessive acid leakoff is thought to be the main reason that limits fracture propagation and live acid penetration distance. Since most carbonates are naturally fractured, we developed a new model in this paper to simulate acid leakoff into a naturally fractured carbonate oil reservoir during acid fracturing. Our model incorporates the acid-rock reaction, fracture width variation due to rock dissolution on the fractured surfaces, and fluid flow in naturally fractured carbonate oil reservoirs. Given the information of the reservoir, injected acid, and pressure in the hydraulic facture and the reservoir, the model predicts acid leakoff with time. In this study, we found that acid leakoff mechanism in naturally fractured carbonates is much different from that in reservoirs without natural fractures. Widened natural fractures by acid-rock reaction act as high-conductivity conduits allowing leakoff acid to penetrate deeper into the formation, resulting in serious leakoff. Wide natural fractures have a dominant effect on acid leakoff compared to micro-fractures and matrix.  相似文献   

2.
Quasi-static stepwise propagation of a hydraulic fracture in rock with a regular structure in the absence of filtration is considered. It is proposed to use a brittle fracture diagram taking into account the hydraulic fracturing fluid pressure and the confining pressure. Fracture curves describing the brittle rock fracture where the hydraulic fracturing fluid partially fills the fracture are constructed and used to predicted the possibility of stepwise propagation of hydraulic fracturing in the case where the fluid gradually flows into the fracturing crack. The regularity of the structure of the brittle rocks fracture is estimated from the results of two full-scale experiments: the critical stress intensity factor and the tensile strength limit of the rock. Experiments on pulsed loading of polymethylmethacrylate samples with stepwise crack propagation along concentric circular arcs were performed. The results of the experiments are consistent with theoretical predictions.  相似文献   

3.
In acid fracturing, excessive acid leakoff is thought to be the main reason that limits fracture propagation and live acid penetration distance. Although acid leakoff has been studied under experimental conditions, the acid leakoff theory developed under experimental conditions cannot be extended to in situ conditions because the injection rate or pressure drop across a core plug is fixed in the experiments. In this paper, we used a model that couples a two-scale continuum model simulating wormholing in the invaded zone and a reservoir flow model for the compressed zone to simulate acid leakoff process under in situ conditions. Based on this model, we investigated wormhole propagation behavior and its effect on acid leakoff under in situ conditions. The study shows different wormhole propagation behavior under in situ conditions from that under experimental conditions. Wormholes grow fast at the beginning and slow down at later time due to the rise of reservoir pressure caused by the leakoff and the growth of the invaded zone. In oil reservoirs, wormholing has minor effect on acid leakoff because of small compressibility and relatively high reservoir fluid viscosity, but in gas reservoirs, the influence of wormholing on acid leakoff becomes significant due to large compressibility and low reservoir fluid viscosity. Acid viscosity has more notable influence on acid leakoff in gas reservoirs than in oil reservoirs.  相似文献   

4.
水力压裂形成复杂裂缝网络是致密储层油气开采的重要技术,掌握水压裂缝扩展机理是控制压裂行为和优化压裂效果的关键.水压裂缝动态扩展行为涉及储层岩体、注入压裂液、压裂实施工艺等方面,其中水力压裂扩展时间、压裂液流体动力粘度系数、压裂液流体注入流速、储层岩石剪切模量成为决定裂缝扩展长度和裂缝开度的重要因素.本研究采用KGD、PKN两类等高解析模型对主控因素的参数敏感性进行分析,直观、快速、可靠地获得水压裂缝扩展长度、张开度动态演化行为的量化数值.研究发现,压裂持续开展过程中水压裂缝扩展长度呈线性增长、开度逐渐趋于稳定,高流体动力粘度导致裂缝难扩展、形成较大裂缝开度,通过增加压裂液流体注入流速可同时增加裂缝扩展长度和开度,较高的岩石剪切模量将降低水压裂缝的开度.通过对比两类解析模型在不同参数下的水压裂缝扩展结果,分析压裂参数与裂缝扩展的相关性和敏感系数,讨论水力压裂解析模型的裂缝扩展参数敏感性.  相似文献   

5.
横观各向同性油气藏水力压裂裂纹扩展规律研究   总被引:1,自引:1,他引:0  
针对横观各向同性与各向同性油气藏水力压裂裂纹扩展的差异性,基于扩展有限元法建立水力压裂力学模型,通过ABAQUS子程序开发了各向同性和横观各向同性岩体的起裂判据。在各向同性岩体数值模拟结果与解析解以及现场压裂典型曲线对比吻合的基础上,得到了包含层理构造的横观各向同性岩体水力压裂过程中裂纹扩展规律。层理类岩体水力压裂的裂缝扩展方向由地应力状态、层理方向以及岩体与层理界面抗拉强度共同决定;水力压裂过程中,注水压力在裂纹尖端产生应力集中,层理面法向分量先达到界面抗拉强度时,裂纹沿层理方向开裂,反之裂纹沿垂直最小地应力的方向扩展;裂纹扩展速度随层理抗拉强度的增加而降低;由于地层的滤失,随压裂液的注入,裂纹长宽尺度增长速率降低。  相似文献   

6.
An exact solution of the problem of hydraulic fracturing in a permeable medium with continuous fluid injection in a partially penetrated formation is constructed using the Perkins-Kern fracture model. The amount of fluid leakage from the fracture is determined using the pressure field of the fluid filtrate defined by the Shchelkachev equation (of the piezoconductivity type). Universal profiles of the fluid pressure in the fracture and the rate of fluid flow from it are obtained. It is shown that at the Perkins-Kern fracture tip, there is a dramatic increase in the leakage from the fracture.  相似文献   

7.
Various mining processes involve the injection of liquid under pressure into existing or newlyproduced points; examples are hydraulic fracturing in oil, fracturing in coal seams, and oil displacement at elevated pressures [1, 2]. Studies have been made [3, 4] of vertical and horizontal crack growth in response to a noninfiltrating liquid. In those cases, the actual pressure distribution in a joint was replaced by the statically equivalent uniform pressure on part of the joint surface. Here we propose a treatment that handles such topics reasonably effectively and does not involve the assumption of uniform pressure distribution. A system of equations has been derived for a vertical symmetrical crack to define the Cauchy problem for the crack volume. The quasistatic equilibrium condition for the crack and the solution are very much simplified if a system of mobile elliptical coordinates related to the crack is used. An analogous approach has been used in examining the growth of a circular horizontal crack.  相似文献   

8.
Self-similar solution for deep-penetrating hydraulic fracture propagation   总被引:1,自引:0,他引:1  
The propagation of a vertical hydraulic fracture of a constant height driven by a viscous fluid injected into a crack under constant pressure, is considered. The fracture is assumed to be rectangular, symmetric with respect to the well, and highly elongated in the horizontal direction (the Perkins and Kern model). The fracturing fluid viscosity is assumed to be different from the stratum saturating fluid viscosity, and the stratum fluid displacement by a fracturing fluid in a porous medium is assumed to be piston-like. The compressibility of the fracturing fluid is neglected. The stratum fluid motion is governed by the equation of transient seepage flow through a porous medium.A self-similar solution to the problem is constructed under the assumption of the quasi-steady character of the fracturing fluid flow in a crack and in a stratum and of a locally one-dimensional character of fluid-loss through the crack surfaces. Crack propagation under a constant injection pressure is characterized by a variation of the crack sizel in timet according to the lawl(t)=l o (1+At)1/4, where the constantA is the eigenvalue of the problem. In this case, the crack volume isVl, the seepage volume of fracturing fluidV f l 3, and the flow rate of a fluid injected into a crack isQ 0l –1.  相似文献   

9.
This paper studies the propagation of a plane-strain fluid-driven fracture with a fluid lag in an elastic solid. The fracture is driven by a constant rate of injection of an incompressible viscous fluid at the fracture inlet. The leak-off of the fracturing fluid into the host solid is considered negligible. The viscous fluid flow is lagging behind an advancing fracture tip, and the resulting tip cavity is assumed to be filled at some specified low pressure with either fluid vapor (impermeable host solid) or pore-fluids infiltrating from the permeable host solid. The scaling analysis allows to reduce problem parametric space to two lumped dimensionless parameters with the meaning of the solid toughness and of the tip underpressure (difference between the specified pressure in the tip cavity and the far field confining stress). A constant lumped toughness parameter uniquely defines solution trajectory in the parametric space, while time-varying lumped tip underpressure parameter describes evolution along the trajectory. Further analysis identifies the early and large time asymptotic states of the fracture evolution as corresponding to the small and large tip underpressure solutions, respectively. The former solution is obtained numerically herein and is characterized by a maximum fluid lag (as a fraction of the crack length), while the latter corresponds to the zero-lag solution of Spence and Sharp [Spence, D.A., Sharp, P.W., 1985. Self-similar solution for elastohydrodynamic cavity flow. Proc. Roy. Soc. London, Ser. A (400), 289–313]. The self-similarity at small/large tip underpressure implies that the solution for crack length, crack opening and net fluid pressure in the fluid-filled part of the crack is a given power-law of time, while the fluid lag is a constant fraction of the increasing fracture length. Evolution of a fluid-driven fracture between the two limit states corresponds to gradual expansion of the fluid-filled region and disappearance of the fluid lag. For small solid toughness and small tip underpressure, the fracture is practically devoid of fluid, which is localized into a narrow region near the fracture inlet. Corresponding asymptotic solution on the fracture lengthscale corresponds to that of a crack loaded by a pair of point forces which magnitude is determined from the coupled hydromechanical solution in the fluid-filled region near the crack inlet. For large solid toughness, the fluid lag is vanishingly small at any underpressure and the solution is adequately approximated by the zero-lag self-similar large toughness solution at any stage of fracture evolution. The small underpressure asymptotic solutions obtained in this work are sought to provide initial condition for the propagation of fractures which are initially under plane-strain conditions.  相似文献   

10.
The problem of hydraulic fracture crack propagation in a porous medium is considered. The fracture is driven by an incompressible viscous fluid with a power-law rheology of the pseudoplastic type. The fluid seepage is described by an equation generalizing the Darcy law in the hydraulic approximation. It is shown that the system of governing equations has a power-law self-similar solution, whereas, in the limiting cases of low and high fluid saturation in the porous medium, there are some families of power-law or exponential self-similar solutions. The complete self-similar solution is constructed. The effect of the nonlinear rheology of the fracturing fluid on the behavior of the solution is studied. The problem is solved analytically for an arbitrary boundary condition at the crack inlet when the viscous stresses in the non-Newtonian fluid are close to a constant.  相似文献   

11.
Fracturing-fluid leak-off in fractured gas shale is a complex process involving multiple pore/fluid transports and interactions. However, water leak-off behavior has not been modeled comprehensively by considering the multi-pores and multi-mechanisms in shale with existing simulators. In this paper, we present the development of a comprehensive multi-mechanistic, multi-porosity, and multi-permeability water/gas flow model that uses experimentally determined formation properties to simulate the fracturing-fluid leak-off of hydraulically fractured shale gas wells. The multi-mechanistic model takes into account water transport driven by hydraulic convection, capillary and osmosis, gas transport caused by hydraulic convection, and salt ion transport caused by advection and diffusion. The multi-porosity includes hydraulic fracture millipores, organic nanopores, clay nanopores, and other inorganic micropores. The multi-permeability model accounts for all the important processes in shale system, including gas adsorption on the organics’ surface, multi-mechanistic clay/other inorganic mineral mass transfer, inorganic mineral/hydraulic fracture mass transfer, and injection from a hydraulically fractured wellbore. The dynamic water saturation and pressure profiles within clay and other inorganic matrices are compared, revealing the leak-off behavior of water in rock media with different physicochemical properties. In sensitivity analyses, cases with different clay membrane efficiency, volume proportion of source rock, connate water salinity, and saturation are considered. The impacts of shale properties on water fluxes through wellbore, hydraulic fracture and matrix, and the total injection and leak-off volumes of the well during the treatment of hydraulic fracturing are investigated. Results show that physicochemical properties in both organic and inorganic matrices affect the water leak-off behavior.  相似文献   

12.
The problem of gas fracture formation in a porous medium is investigated. An inertialess viscous polytropic gas flow along the fracture is considered. The assumption of small fracture width with respect to the height and length makes it possible to adopt the vertical plane cross-section hypothesis on the basis of which the dependence of the gas pressure inside the fracture on its width can be reduced to a linear law. Initially, the soil surrounding the fracture is soaked with oil-bearing fluid. During fracturing the reservoir gas penetrates into the soil mass and displaces the fluid. A closed system of equations, which describes the evolution of the fracture opening, the depth of gas penetration into the reservoir, and the gas velocities inside the fracture, is constructed. The limiting regimes of gas seepage into the surrounding reservoir are considered and a one-parameter family of self-similar solutions of the system is given for each. The asymptotics of the solution in the neighborhood of the fracture nose is investigated and analytic expressions for the fracture length are obtained. The solution of the problem of gas fracture is compared with the hydraulic fracturing problem in an analogous formulation within the framework of the plane cross-section hypothesis.  相似文献   

13.
The prediction of the growth of a hydraulic fracture in an oil bearing formation based on the injection rate of fluid is valuable in applications of the waterflood technique in secondary oil recovery. In this paper, the problem of hydraulic fracture growth is studied under the assumption of uniform distribution of pressure in the fracture and unidirectional permeating flow in an infinitely large isothermal linearly elastic porous medium saturated with a one-phase incompressible fluid. The condition of plane strain is imposed in the study. A comparison of the constant fracture toughness criterion based on the asymptotic value for large crack growth with the crack tip ductility criterion for an ideally plastic solid under plane strain and small-scale yielding conditions indicates that the effect of ductility of rock on the crack growth is so small that the steady state value of the energy release rate can be reached within a short period of crack growth. Thus we can employ the constant fracture toughness criterion in our study. The analysis includes the effects of both fracture volume increase and leak-off of fluid from the surface of the fracture. A nonlinear singular integro-differential equation can be formulated for the quasi-static hydraulic fracture growth under a prescribed injection rate. It is solved numerically by a modified fourth order Runge-Kutta method.  相似文献   

14.
水力压裂是在高压粘滞流体或清水作用下地层内裂缝起裂与扩展的过程。由于包含岩石断裂和流-固耦合等复杂问题,对该过程的数值模拟具有相当大的挑战性。本文建立基于有限元与离散元混合方法的裂纹模型,模拟岩石裂纹扩展,实现了连续向非连续的转化;建立双重介质流动模型,裂隙流作为孔隙渗流的压力边界,孔隙渗流反作用裂隙的压力求解,处理了流体在基岩与人工裂缝中的协调流动;将裂纹模型与流体流动模式进行结合,建立断裂-应力-渗流耦合形式的力学模型,进一步分析了水力压裂的基本过程,综合多种数值计算方法,编写程序,在验证岩体裂纹模型与双重介质流动模型有效性的基础上,对压裂过程进行复现,将模拟结果与文献结果进行了对比,并讨论了所构建模型的优缺点。  相似文献   

15.
含层理页岩气藏水力压裂裂纹扩展规律解析分析   总被引:8,自引:6,他引:2  
孙可明  张树翠 《力学学报》2016,48(5):1229-1237
页岩气蕴藏在页岩层中,页岩层的层理性构造使其水力压裂裂纹扩展与常规均质储层不同.为研究页岩储层水力压裂的裂纹扩展规律,基于复变函数保角变换,得出裂纹尖端应力集中解,考虑页岩非均质、强度各向异性特点,通过比较裂纹沿各方向扩展所需的裂缝尖端水压力,推导出水力压裂裂纹垂直于最小地应力方向稳定扩展过程中在斜交层理后的扩展判据.分别定义了水力压裂裂纹在层理处起裂和沿层理扩展的弱层和岩石基体临界强度比,根据两个临界强度比确定水力压裂裂纹遇层理时在层理处起裂和沿层理扩展的层理弱面强度范围,以此表示水力压裂裂纹转向层理扩展的难易程度.通过对裂纹扩展判据的分析得出:层理起裂弱层和岩石基体临界强度比随层理走向线与第一主应力夹角和层理倾角的减小以及第三主应力和岩石基体强度的增大而增大;层理走向角小于35.26°时,层理起裂弱层和岩石基体临界强度比随第一主应力的减小以及第二主应力的增大而增大;反之,层理起裂弱层和岩石基体临界强度比随第一主应力的减小以及第二主应力的增大而减小;层理扩展弱层和岩石基体临界强度比随层理走向线与第一主应力夹角、层理倾角和地应力差的减小以及岩石基体抗拉强度的增大而增大.层理起裂条件与层理扩展条件同时满足时,水力压裂裂纹转向层理方向扩展.   相似文献   

16.
含水合物粉质黏土压裂成缝特征实验研究   总被引:5,自引:2,他引:3  
水力压裂技术是一种重要的油气井增产、增注措施,已经广泛应用于页岩油气等非常规资源的商业开采中.目前对于粉质黏土水合物沉积物的水力压裂成缝能力尚不清楚.本文采用南海水合物沉积层的粉质黏土制备沉积物试样,并与实验室配制的粉细砂土沉积物对比,分析粉质黏土沉积物的水力成缝能力及主控因素.实验结果表明含水合物和冰的沉积物破裂压力较高,这与粉质黏土沉积物特殊的应力-应变特征和渗透性有关.当沉积物应变高于6%时, 试样强度迅速上升, 呈现应变强化的特征,对水力拉伸裂缝的扩展具有一定的阻碍作用. 粉质黏土沉积物粒径细小, 渗透性差,难以通过渗透作用传递压力, 提高了沉积层的破裂压力. 此外,粉质黏土水合物沉积层裂缝扩展存在明显延迟效应,说明裂缝扩展受到流体压力和热应力的共同影响. 适当延长注入时间,保持流体与沉积层充分接触, 会起到分解水合物、降低破裂压力的作用.该研究成果有利于深入理解水力裂缝在水合物沉积层中的扩展规律,对探索压裂技术在水合物沉积层开发中的应用具有重要意义.   相似文献   

17.
The motion of a gas or liquid in a growing main crack is examined in connection with the problem of the hydraulic fracture of an oil-bearing bed [1, 2] and evaluation of the quantity of gaseous products escaping from the cavity formed by the underground explosion into the atmosphere by way of the crack [3]. The studies [1, 2] formulated and solved a problem on the quasisteady propagation of an axisymmetric crack in rock under the influence of an incompressible fluid pumped into the crack. An exact solution was obtained in [4] to the problem of the hydraulic fracture of an oil-bearing bed with a constant pressure along the crack. The Biot consolidation theory was used as the basis in [5] for an examination of the growth of a disk-shaped crack associated with hydraulic fracture of a porous bed saturated with fluid. A numerical solution to a similarity problem on the motion of a compressible gas ina plane crack was obtained in [6]. Here we examine the problem of the propagation of a main crack (plane and axisymmetric) under the influence of a gasmoving away from an underground cavity.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 4, pp. 116–122, July–August, 1986.We thank V. M. Entova for his remarks, which helped to improve the investigation.  相似文献   

18.
页岩气藏压裂缝网扩展数值模拟   总被引:5,自引:1,他引:4  
曾青冬  姚军  孙致学 《力学学报》2015,47(6):994-999
为探究页岩气藏水力压裂复杂裂缝网络的形成机理,开展了缝网扩展的数值模拟研究.考虑应力阴影和天然裂缝作用,建立了井筒和裂缝中流体流动模型,利用位移不连续方法求解应力与位移不连续量,然后构建了压力与裂缝宽度的迭代方程,并采用牛顿迭代法求解.通过比较数值解经典模型解析解,验证了模型和迭代解法的正确性.多簇裂缝同步扩展时裂缝间距越小,压裂液分配到各条裂缝越不均匀,靠近井筒跟部的裂缝的分流量越大,从而裂缝宽度越大;考虑天然裂缝作用时,逼近角越小或者应力各向异性越弱,水力裂缝越容易发生转向扩展,裂缝网络越复杂.   相似文献   

19.
The exact solution of self-excited vibrations of a reservoir hydraulic fracture after stopping the hydraulic fracture fluid injection is obtained on the basis of the generalized hyperbolictype Perkins-Kern-Nordgren model of the development of vertical reservoir hydraulic fracture. The vibrations are excited by the rarefaction wave developed after stopping the injection. The solution obtained is used to estimate the height, the width, and the half-length of the reservoir hydraulic fracture on the basis of the field data of bottomhole pressure gauges by the time of stopping the hydraulic fracture fluid injection.  相似文献   

20.
为了研究页岩天然层理倾角及强度等对水力压裂裂纹扩展的影响,采用室内水力压裂实验,通过监测孔直接对裂纹扩展的实时监测和注水压力信息及试件压裂后的剖切,分析层理倾角、强度等对压裂裂纹扩展的影响。实验结果表明:水力压裂过程中,垂直最小地应力稳定扩展的主裂缝遇层理时,层理面与主裂缝初始扩展方向夹角越小,主裂缝越易沿着层理面方向扩展,层理面与主裂缝初始扩展方向夹角越大,主裂缝遇层理面时越易贯穿层理面沿原方向扩展;层理方位,地应力及基质抗拉强度不变,层理的抗拉强度远弱于基质抗拉强度时,主裂缝与层理面相遇后越易沿着层理面方向扩展,层理抗拉强度与基质抗拉强度越相近,主裂缝遇层理时越易贯穿层理沿原方向扩展;层理方位和强度不变,地应力及应力差越大,主裂缝遇层理后越易贯穿层理面沿原方向扩展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号