首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
In the region of transition from a two-dimensional laminar boundary layer to a turbulent one, three-dimensional flow occurs [1–3]. It has been proposed that this flow is formed as the result of nonlinear interaction of two-dimensional and three-dimensional disturbances predicted by linear hydrodynamic stability theory. Using many simplifications, [4, 5] performed a calculation of this interaction for a free boundary layer and a boundary layer on a wall with a very coarse approximation of the velocity profile. The results showed some argreement with experiment. On the other hand, it is known that disturbances of the Tollmin—Schlichting wave type can be observed at sufficiently high amplitude. This present study will use the method of successive linearization to calculate the primary two- and three-dimensional disturbances, and also the average secondary flow occurring because of nonlinear interaction of the primary disturbances. The method of calculation used is close to that of [4, 5], the disturbance parameters being calculated on the basis of a Blazius velocity profile. A detailed comparison of results with experimental data [1] is made. It developed that at large disturbance amplitude the amplitude growth rate differs from that of linear theory, while the spatial distribution of disturbances agree s well with the distribution given by the natural functions and their nonlinear interaction. In calculating the secondary flow an experimental correction was made to the amplitude growth rate.  相似文献   

2.
3.
The nonlinear development of disturbances of the traveling wave type in the boundary layer on a flat plate is examined. The investigation is restricted to two-dimensional disturbances periodic with respect to the longitudinal space coordinate and evolving in time. Attention is concentrated on the interactions of two waves of finite amplitude with multiple wave numbers. The problem is solved by numerically integrating the Navier-Stokes equations for an incompressible fluid. The pseudospectral method used in the calculations is an extension to the multidimensional case of a method previously developed by the authors [1, 2] in connection with the study of nonlinear wave processes in one-dimensional systems. Its use makes it possible to obtain reliable results even at very large amplitudes of the velocity perturbations (up to 20% of the free-stream velocity). The time dependence of the amplitudes of the disturbances and their phase velocities is determined. It is shown that for a fairly large amplitude of the harmonic and a particular choice of wave number and Reynolds number the interacting waves are synchronized. In this case the amplitude of the subharmonic grows strongly and quickly reaches a value comparable with that for the harmonic. As distinct from the resonance effects reported in [3, 4], which are typical only of the three-dimensional problem, the effect described is essentially two-dimensional.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 37–44, March–April, 1990.  相似文献   

4.
5.
A separation criterion, i.e., a definite relationship between the external flow and the boundary layer parameters [1], can be used to estimate the possibility of the origination of separation of a two-dimensional boundary layer. A functional form of the separation criterion has also been obtained for a three-dimensional boundary layer [2] on the basis of dimensional analysis. As in the case of the two-dimensional boundary layer, locally self-similar solutions can be used to determine the specific magnitude of the separation criterion as a function of the values of the governing parameters. Locally self-similar solutions of the two-dimensional laminar boundary-layer equations have been found at the separation point for a perfect gas with a linear dependence of the coefficient of viscosity on the temperature (Ω=1) and Prandtl number P=1 [3, 4]. The influence of blowing and suction has been studied for this case [5]. Self-similar solutions have been obtained for Ω=1, P=0.723 for the limit case of hypersonic perfect gas flow [6]. Locally self-similar solutions of the three-dimensional laminar boundary-layer equations at the separation point are presented in [7] for a perfect gas with Ω=1, P=1. There are no such computations for Ω≠1, P≠1; however, the results of computing several examples for a two-dimensional flow [8] show that the influence of the real properties of a gas can be significant and should be taken into account. Self-similar solutions of the two- and three-dimensional boundary-layer equations at the separation point are found in this paper for a perfect gas with a power-law dependence of the viscosity coefficient on the enthalpy (Ω=0.5, 0.75, 1.0) for different values of the Prandtl number (P=0.5, 0.7, 1.0) in a broad range of variation of the external stream velocity (v 1 2 /2h1* = 0–0.99) and the temperature of the streamlined surface. Magnitudes of the separation criterion for a laminar boundary layer have been obtained on the basis of these data.  相似文献   

6.
The stability of a laminar boundary layer of a power-law non-Newtonian fluid is studied. The validity of the Squire theorem on the possibility of reducing the flow stability problem for a power-law fluid relative to three-dimensional disturbances to a problem with two-dimensional disturbances is demonstrated. A numerical method of integrating the generalized Orr-Sommerfeld equation is constructed on the basis of previously proposed [1] transformations. Stability characteristics of the boundary layer on a longitudinally streamlined semiinfinite plate are considered.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 101–106, January–February, 1976.  相似文献   

7.
The processes of wave disturbance propagation in a supersonic boundary layer with self-induced pressure [1–4] are analyzed. The application of a new mathematical apparatus, namely, the theory of characteristics for systems of differential equations with operator coefficients [5–8], makes it possible to obtain generalized characteristics of the discrete and continuous spectra of the governing system of equations. It is shown that the discontinuities in the derivatives of the solution of the boundary layer equations are concentrated on the generalized characteristics. It is established that in the process of flow evolution the amplitude of the weak discontinuity in the derivatives may increase without bound, which indicates the possibility of breaking of nonlinear waves traveling in the boundary layer.  相似文献   

8.
9.
The problem of the wave motion of a liquid layer was first investigated by Kapitsa [1, 2], who gave an approximate analysis of the free flow and flow in contact with gas stream, and evaluated the influence of the heat transfer processes on the flow. The problem of the stability of such a flow was studied in detail by Benjamin [3] and Yih [4, 5], These authors proposed seeking the solution of the resulting Orr-Sommerfeld equation in the form of a series in a small parameter and developed a corresponding method of successive approximations. As the small parameter [3–5], they made use of the product of the disturbance wave number and the Reynolds number. In these studies, the tangential stress on the free surface was taken equal to zero, and the fluid film was always considered essentially plane. At the same time, there are certain types of problems of considerable interest in which neither of these assumptions is satisfied. A good example might be the problem on the stability of the annular regime of two-phase flow in pipes and capillaries, when the basic stream of one fluid is separated from the pipe walls by an annular layer of another fluid. In this case, the interface has a finite radius of curvature and the tangential stress on the interface may be significantly different from zero.In the present paper, the problem of the flow stability of a fluid layer with respect to small disturbances of the boundary surface is considered with account for both the finite radius of curvature of the boundary surface and the nonzero hydrodynamic friction at the boundary. The film is assumed to be quite thin. This enables us, firstly, to consider the Reynolds number small, to use the general method of [5], and, second ly, to consider the film thickness sufficiently small in comparison with the radius of curvature of the substrate on which the film lies. Furthermore, for evaluating the stability of the laminar flow of the curved film we can use the results obtained for a plane film with account for the terms which depend on the curvature of the substrate.As a rule, previous studies have considered only one-dimensional disturbances of the boundary surface. In the present paper, in the first approximation, the stability is examined in relation to two-dimensional disturbances of this surface, corresponding to three-dimensional flow disturbances.As an example, the results obtained are applied to the investigation of the stability of the free flow of a layer of fluid over an inclined plane under the sole influence of gravity.  相似文献   

10.
The three-frequency resonance of Tolman-Schlichting waves, one of which propagates along the stream while the other two propagate at adjacent angles to it, is investigated as a function of the spectrum and initial intensity in incompressible flows of the boundary-layer type within the framework of a weakly nonlinear theory. In the parallel-flow approximation such an interaction leads to the formation of unstable self-oscillations. The spatial evolution of the associated disturbances is studied with allowance for the self-similar deformation of the velocity profile of the main flow. It is shown that such development can lead to a sharp amplification of the oscillations, primarily of those propagating at an angle to the flow. The role of the effects under consideration in the transitional process and the connection with experimental data are discussed. As experiments [1, 2] show, in the process of a transition from a laminar boundary layer to a turbulent region, well described by the linear theory of hydrodynamic stability, there first comes a section of the excitation of harmonics of a Tolman-Schlichting wave, the appearance of three-dimensional structures, and a rapid growth in the intensity of low-frequency oscillations. There is no doubt that in this section the phenomena are dependent on the nonlinear character of the development with disturbances. The resonance interaction of wave triads can play an important role in this. For small enough amplitudes such an interaction is described by a first-order theory [3, 4], and in the general case the nonlinear effects associated with them should occur sooner than others. The importance of resonance triads for the explanation of the development of three-dimensional structures in a layer and the generation of intense pulsations has already been emphasized in [5, 6]. The clarification of the properties of the evolution of resonantly interacting disturbances therefore is important for an understanding of this transitional process.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 78–84, September–October, 1978.The authors thank V. Ya. Levchenko for a discussion of the work.  相似文献   

11.
Nonlinear development of a wave in a boundary layer   总被引:3,自引:0,他引:3  
In recent years definite progress has been achieved in the construction of theoretical models of nonlinear wave processes which lead to a transition from laminar to turbulent flow [1, 2]. At the same time, there is a shortage of actual experimental material, especially for flows in a boundary layer. Fairly thorough experimental studies have been carried out only on the initial stage of the development of disturbances in a boundary layer, which is satisfactorily describable by the linear theory of hydrodynamic stability. In evaluating the theoretical models of subsequent stages of the transition, investigators have been forced to turn chiefly to much earlier experiments carried out by the United States National Bureau of Standards [3, 4], in which the main attention was concentrated on the three-dimensional structure of the transition region. The present investigation was undertaken for the purpose of obtaining detailed data on the structure of the flow in the transition region when there is disturbance in the laminar boundary layer of a two-dimensional wave. In order to make the two-dimensional nonlinear effects stand out more clearly, the amplitude of the wave was specified to be fairly large from the very outset. In contrast to earlier investigations, the main attention was centered on the study of the spectral composition of the disturbance field.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 49–58, May–June, 1977.  相似文献   

12.
In [1] on the basis of a numerical integration of the Navier-Stokes equations the authors investigated the nonlinear evolution of two-dimensional disturbances of the traveling wave type in the boundary layer on a flat plate. The process of interaction of two waves with different wave numbers and initial amplitudes was examined. In this article the study of these interactions is continued. Special attention is paid to the spatial structure of the disturbances with respect to the cross-flow coordinate (with respect to the longitudinal coordinate the disturbances are assumed to be periodic) at various moments of time. It is shown that if the initial amplitude of one of the waves is sufficiently large, i.e., exceeds a certain threshold value, an undamped quasisteady regime is established during the interaction process. At lower amplitudes the process degenerates and the waves develop independently. In these two cases the evolution of the spatial distribution of the perturbation amplitudes is qualitatively different. In the first case the shape of the amplitude distribution varies only slightly with time, while in the second it depends importantly on the parameters of the wave numbers and the Reynolds number. When the parameters are such that one of the finite-amplitude waves is damped, its amplitude distribution rapidly evolves into the form characteristic of disturbances of the continuous spectrum of the linear stability problem.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 19–24, September–October, 1990.  相似文献   

13.
Experiments have demonstrated [1] that the transition of streamline-type flow into turbulent flow in a boundary layer occurs as a result of the formation and development of turbulent spots apparently arising from small natural disturbances. A study of the nonlinear evolution and interaction of localized disturbances requires knowledge of their characteristics to a linear approximation [2]. In the current work, results are presented of calculations of such characteristics for the first two unstable modes in a supersonic boundary layer on a two-dimensional plate (M = 4.5, Tw = 4.44).Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 50–53, January–February, 1976.  相似文献   

14.
The transition to turbulence in a boundary layer can be induced by perturbations of low intensity and is accompanied by a growth in their energy, the development of three-dimensional structures, and a change in the spectral composition of the field. A number of important properties of the process admit interpretation in the framework of nonlinear stability theory and can be due to a resonance interaction. Experiments [1, 2] have revealed a transition accompanied by an appreciable enhancement of pulsations whose period is twice that of the driving vibrating tape. Theoretical investigations [3–9] have revealed the existence of a resonance mechanism capable of strong excitation of three-dimensional Tollmien-Schlichting waves at the frequency of a subharmonic. It has been suggested [4] that the observed transition regime is the result of evolution of triplets of resonantly coupled oscillations forming symmetric triplets [10]. In contrast to the type of transition considered by Craik et al. [10, 11], the leading role is played by subharmonics distinguished parametrically in the background. Experimental confirmations have been obtained [12, 13] of the coupling of the resonances in symmetric triplets with the subharmonic regime. Further investigation of the resonance mechanism is an important topical problem. This paper presents a study on the formation and special characteristics of the initial stage in the nonlinear development of triplets; the collective interaction of a two-dimensional Tollmien-Schlichting wave with a packet of three-dimensional waves is examined; the behavior of the system is analyzed, taking into account the resonance coupling with the harmonic of the main wave. A comparison is made between Craik's model and experimental data.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 23–30, July–August, 1984.The auothors wish too express their gratitude to A. G. Volodin for useful discussions and V. Ya, Levchenko for his interest in the work.  相似文献   

15.
The study of unipolar-charged fluids in the presence of external and induced electric fields has recently taken on great importance. The characteristics of one-dimensional EGD flows [1, 2] and developed laminar flows of a viscous fluid [3] have been clarified in several studies made in this field. However, the study of three-dimensional flows of such media is actually just beginning. Here, along with the analysis of three-dimensional boundary layers and jets [4], there is considerable interest in the study of spatial (two-dimensional and three-dimensional) EHD flows of an inviscid fluid, since in many engineering devices the zone of interaction of the flow with the electric fields does not exceed a few channel diameters, which makes it possible to neglect viscous effects.In this paper we examine some aspects of two-dimensional EHD flows of a viscous incompressible medium for infinitely large electric Reynolds numbers. The perturbations of the hydrodynamic parameters of the flow downstream from the zone of action of the electrostatic forces are determined. It is shown that in many cases the flow parameters outside this zone may be determined without solving the complete system of EHD partial differential equations.  相似文献   

16.
The stability of a supersonic boundary layer over an intensively cooled plate with respect to three-dimensional disturbances is investigated. Two neutral stability curves, the existence of which was established in [1], are contemplated. It is shown by asymptotic analysis that each of these two neutral stability curves separates into a closed and an ordinary neutral curve in a certain range of disturbance propagation angles. As the surface is cooled, the closed neutral curve contracts to a point. The results of asymptotic analysis were confirmed by numerical integration of the stability equations.  相似文献   

17.
In [1] a system of equations was obtained for the case of a potential motion of an ideal incompressible homogeneous fluid; the system described the propagation of a train of waves in a medium with slowly varying properties, the motion in the train being characterized by a wave vector and a frequency. A solitary wave is a particular case of a wave train in which the length of the waves in the train is large. In [2, 3] a quasilinear system of partial differential equations was obtained which described two-dimensional and three-dimensional motion of a solitary wave in a layer of liquid of variable depth. It follows from this system that if the unperturbed state of the liquid is the quiescent state, then some integral quantity (the average wave energy [2–4]), referred to an element of the front, is preserved during the course of the motion. This fact is also valid for a train of waves, and can be demonstrated to be so upon applying the formalism of [1] to a Lagrangian similar to that used in [2]. In the present paper we obtain, for the case of a layer of liquid of constant depth, a solution in the form of simple waves for a system, equivalent to the system obtained in [3], describing the motion of a solitary wave and also the motion of a train of waves. We show that it is possible to have tilting of simple waves, leading in the case considered here to the formation of corner points on the wave front. We consider several examples of initial perturbations, and we obtain their asymptotics as t→∞. We make our presentation for the solitary wave case; however, in view of our statement above, the results automatically carry over to the case of a train of waves.  相似文献   

18.
Interactions of disturbances in a hypersonic boundary layer on a porous surface are considered within the framework of the weakly nonlinear stability theory. Acoustic and vortex waves in resonant three-wave systems are found to interact in the weak redistribution mode, which leads to weak decay of the acoustic component and weak amplification of the vortex component. Three-dimensional vortex waves are demonstrated to interact more intensively than two-dimensional waves. The feature responsible for attenuation of nonlinearity is the presence of a porous coating on the surface, which absorbs acoustic disturbances and amplifies vortex disturbances at high Mach numbers. Vanishing of the pumping wave, which corresponds to a plane acoustic wave on a solid surface, is found to assist in increasing the length of the regions of linear growth of disturbances and the laminar flow regime. In this case, the low-frequency spectrum of vortex modes can be filled owing to nonlinear processes that occur in vortex triplets.  相似文献   

19.
Numerical modeling of the receptivity of a two-dimensional flat-plate boundary layer to entropy disturbances is carried out at the freestream Mach number M = 6. Low-intensity perturbations considered are in the form of temperature spots of various shapes and with different initial positions downstream of the shock. They are shown to be able to generate unstable disturbances in the boundary layer. This receptivity mechanism is relatively weak as compared with the receptivity to acoustic waves. When the entropy perturbations are introduced upstream of the bow shock, they first pass across the shock. Downstream of the shock this interaction generates acoustic waves which, in turn, penetrate into the boundary layer thus exciting unstable disturbances of a considerably greater amplitude than the temperature spots. Thus, the bow shock can change the receptivity mechanism.  相似文献   

20.
Direct numerical simulation is applied to obtain laminar-turbulent transition in supersonic flow over a flat plate. It is shown that, due to the nonlinear instability, Tollmien–Schlichting waves generated in the boundary layer lead to the formation of oblique disturbances in the flow. These represent a combination of compression and expansion waves, whose intensities can be two orders higher than that of external harmonic disturbances. The patterns of the three-dimensional flow over the plate are presented and the structures of the turbulent flat-plate boundary layers are described for the freestream Mach numbers M = 2 and 4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号