首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The weak Lagrange–Galerkin finite element method for the two‐dimensional shallow water equations on adaptive unstructured grids is presented. The equations are written in conservation form and the domains are discretized using triangular elements. Lagrangian methods integrate the governing equations along the characteristic curves, thus being well suited for resolving the non‐linearities introduced by the advection operator of the fluid dynamics equations. An additional fortuitous consequence of using Lagrangian methods is that the resulting spatial operator is self‐adjoint, thereby justifying the use of a Galerkin formulation; this formulation has been proven to be optimal for such differential operators. The weak Lagrange–Galerkin method automatically takes into account the dilation of the control volume, thereby resulting in a conservative scheme. The use of linear triangular elements permits the construction of accurate (by virtue of the second‐order spatial and temporal accuracies of the scheme) and efficient (by virtue of the less stringent Courant–Friedrich–Lewy (CFL) condition of Lagrangian methods) schemes on adaptive unstructured triangular grids. Lagrangian methods are natural candidates for use with adaptive unstructured grids because the resolution of the grid can be increased without having to decrease the time step in order to satisfy stability. An advancing front adaptive unstructured triangular mesh generator is presented. The highlight of this algorithm is that the weak Lagrange–Galerkin method is used to project the conservation variables from the old mesh onto the newly adapted mesh. In addition, two new schemes for computing the characteristic curves are presented: a composite mid‐point rule and a general family of Runge–Kutta schemes. Results for the two‐dimensional advection equation with and without time‐dependent velocity fields are illustrated to confirm the accuracy of the particle trajectories. Results for the two‐dimensional shallow water equations on a non‐linear soliton wave are presented to illustrate the power and flexibility of this strategy. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
A finite volume cell‐centered Lagrangian hydrodynamics approach, formulated in Cartesian frame, is presented for solving elasto‐plastic response of solids in general unstructured grids. Because solid materials can sustain significant shear deformation, evolution equations for stress and strain fields are solved in addition to mass, momentum, and energy conservation laws. The total stress is split into deviatoric shear stress and dilatational components. The dilatational response of the material is modeled using the Mie‐Grüneisen equation of state. A predicted trial elastic deviatoric stress state is evolved assuming a pure elastic deformation in accordance with the hypo‐elastic stress‐strain relation. The evolution equations are advanced in time by constructing vertex velocity and corner traction force vectors using multi‐dimensional Riemann solutions erected at mesh vertices. Conservation of momentum and total energy along with the increase in entropy principle are invoked for computing these quantities at the vertices. Final state of deviatoric stress is effected via radial return algorithm based on the J‐2 von Mises yield condition. The scheme presented in this work is second‐order accurate both in space and time. The suitability of the scheme is evinced by solving one‐ and two‐dimensional benchmark problems both in structured grids and in unstructured grids with polygonal cells. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
We present in this paper an efficient and accurate volume of fluid (VOF) type scheme to compute moving interfaces on unstructured grids with arbitrary quadrilateral mesh elements in 2D and hexahedral elements in 3D. Being an extension of the multi‐dimensional tangent of hyperbola interface capturing (THINC) reconstruction proposed by the authors in Cartesian grid, an algebraic VOF scheme is devised for arbitrary quadrilateral and hexahedral elements. The interface is cell‐wisely approximated by a quadratic surface, which substantially improves the numerical accuracy. The same as the other THINC type schemes, the present method does not require the explicit geometric representation of the interface when computing numerical fluxes and thus is very computationally efficient and straightforward in implementation. The proposed scheme has been verified by benchmark tests, which reveal that this scheme is able to produce high‐quality numerical solutions of moving interfaces in unstructured grids and thus a practical method for interfacial multi‐phase flow simulations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

4.
This paper presents a three‐dimensional unstructured Cartesian grid model for simulating shallow water hydrodynamics in lakes, rivers, estuaries, and coastal waters. It is a flux‐based finite difference model that uses a cut‐cell approach to fit the bottom topography and shorelines and, at the same time, has the flexibility of discretizing complex geometries with Cartesian grids that can be arbitrarily downsized in the two horizontal directions simultaneously. Because of the use of Cartesian grids, the grid generation is very simple and does not suffer the grid generation headache often seen in many other unstructured models, as the unstructured Cartesian grid model does not have any requirements on the orthogonality of the grids. The newly developed unstructured Cartesian grid model was validated against analytical solutions for a three‐dimensional seiching case in a rectangular basin, before it was compared with another three‐dimensional model named LESS3D for circulations and salinity transport processes in an idealized embayment that is driven by tides and freshwater inflows. Model tests show that the numerical procedure used in the unstructured Cartesian grid model is robust. Similar to other unstructured models, a variable grid size has resulted in a smaller number of grids required for a reasonable model simulation, which in turn reduces the CPU time used in the model run. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Time‐dependent incompressible Navier–Stokes equations are formulated in generalized non‐inertial co‐ordinate system and numerically solved by using a modified second‐order Godunov‐projection method on a system of overlapped body‐fitted structured grids. The projection method uses a second‐order fractional step scheme in which the momentum equation is solved to obtain the intermediate velocity field which is then projected on to the space of divergence‐free vector fields. The second‐order Godunov method is applied for numerically approximating the non‐linear convection terms in order to provide a robust discretization for simulating flows at high Reynolds number. In order to obtain the pressure field, the pressure Poisson equation is solved. Overlapping grids are used to discretize the flow domain so that the moving‐boundary problem can be solved economically. Numerical results are then presented to demonstrate the performance of this projection method for a variety of unsteady two‐ and three‐dimensional flow problems formulated in the non‐inertial co‐ordinate systems. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

6.
A high‐order alternating direction implicit (ADI) method for solving the unsteady convection‐dominated diffusion equation is developed. The fourth‐order Padé scheme is used for the discretization of the convection terms, while the second‐order Padé scheme is used for the diffusion terms. The Crank–Nicolson scheme and ADI factorization are applied for time integration. After ADI factorization, the two‐dimensional problem becomes a sequence of one‐dimensional problems. The solution procedure consists of multiple use of a one‐dimensional tridiagonal matrix algorithm that produces a computationally cost‐effective solver. Von Neumann stability analysis is performed to show that the method is unconditionally stable. An unsteady two‐dimensional problem concerning convection‐dominated propagation of a Gaussian pulse is studied to test its numerical accuracy and compare it to other high‐order ADI methods. The results show that the overall numerical accuracy can reach third or fourth order for the convection‐dominated diffusion equation depending on the magnitude of diffusivity, while the computational cost is much lower than other high‐order numerical methods. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

7.
The finite‐volume methods normally utilize either simple or complicated mathematical expressions to interpolate the fluxes at the cell faces of their unstructured volumes. Alternatively, we benefit from the advantages of both finite‐volume and finite‐element methods and estimate the advection terms on the cell faces using an inclusive pressure‐weighted upwinding scheme extended on unstructured grids. The present pressure‐based method treats the steady and unsteady flows on a collocated grid arrangement. However, to avoid a non‐physical spurious pressure field pattern, two mass flux per volume expressions are derived at the cell interfaces. The dual advantages of using an unstructured‐based discretization and a pressure‐weighted upwinding scheme result in obtaining high accurate solutions with noticeable progress in the performance of the primitive method extended on the structured grids. The accuracy and performance of the extended formulations are demonstrated by solving different standard and benchmark problems. The results show that there are excellent agreements with both benchmark and analytical solutions as well as experimental data. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
A novel Mach‐uniform method to compute flows using unstructured staggered grids is discussed. The Mach‐uniform method is a generalization of the pressure‐correction approach for incompressible flows, and is valid for Mach numbers ranging from 0 (incompressible) to > 1 (supersonic). The primary variables (ρ u ,p and ρ) are updated sequentially. The grid consists of triangles. A staggered positioning of the variables is employed: the scalar variables are located at the centroids of the triangles, whereas the normal momentum components are positioned at the midpoints of the faces of the triangles. Discretization of the two‐dimensional flow equations on unstructured staggered grids is discussed. For the cell face fluxes there is a choice between first‐order upwind and central approximation. Flows around the NACA 0012 airfoil with freestream Mach numbers ranging from 0 to 1.2 are computed to demonstrate the Mach‐uniform accuracy and efficiency of the proposed method. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

9.
Two‐dimensional shallow water models with porosity appear as an interesting path for the large‐scale modelling of floodplains with urbanized areas. The porosity accounts for the reduction in storage and in the exchange sections due to the presence of buildings and other structures in the floodplain. The introduction of a porosity into the two‐dimensional shallow water equations leads to modified expressions for the fluxes and source terms. An extra source term appears in the momentum equation. This paper presents a discretization of the modified fluxes using a modified HLL Riemann solver on unstructured grids. The source term arising from the gradients in the topography and in the porosity is treated in an upwind fashion so as to enhance the stability of the solution. The Riemann solver is tested against new analytical solutions with variable porosity. A new formulation is proposed for the macroscopic head loss in urban areas. An application example is presented, where the large scale model with porosity is compared to a refined flow model containing obstacles that represent a schematic urban area. The quality of the results illustrates the potential usefulness of porosity‐based shallow water models for large scale floodplain simulations. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

10.
A three‐dimensional numerical model is presented for the simulation of unsteady non‐hydrostatic shallow water flows on unstructured grids using the finite volume method. The free surface variations are modeled by a characteristics‐based scheme, which simulates sub‐critical and super‐critical flows. Three‐dimensional velocity components are considered in a collocated arrangement with a σ‐coordinate system. A special treatment of the pressure term is developed to avoid the water surface oscillations. Convective and diffusive terms are approximated explicitly, and an implicit discretization is used for the pressure term to ensure exact mass conservation. The unstructured grid in the horizontal direction and the σ coordinate in the vertical direction facilitate the use of the model in complicated geometries. Solution of the non‐hydrostatic equations enables the model to simulate short‐period waves and vertically circulating flows. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we present a class of semi‐discretization finite difference schemes for solving the transient convection–diffusion equation in two dimensions. The distinct feature of these scheme developments is to transform the unsteady convection–diffusion (CD) equation to the inhomogeneous steady convection–diffusion‐reaction (CDR) equation after using different time‐stepping schemes for the time derivative term. For the sake of saving memory, the alternating direction implicit scheme of Peaceman and Rachford is employed so that all calculations can be carried out within the one‐dimensional framework. For the sake of increasing accuracy, the exact solution for the one‐dimensional CDR equation is employed in the development of each scheme. Therefore, the numerical error is attributed primarily to the temporal approximation for the one‐dimensional problem. Development of the proposed time‐stepping schemes is rooted in the Taylor series expansion. All higher‐order time derivatives are replaced with spatial derivatives through use of the model differential equation under investigation. Spatial derivatives with orders higher than two are not taken into account for retaining the linear production term in the convection–diffusion‐reaction differential system. The proposed schemes with second, third and fourth temporal accuracy orders have been theoretically explored by conducting Fourier and dispersion analyses and numerically validated by solving three test problems with analytic solutions. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
Over the last decade, the lattice Boltzmann method (LBM) has evolved into a valuable alternative to continuum computational fluid dynamics (CFD) methods for the numerical simulation of several complex fluid‐dynamic problems. Recent advances in lattice Boltzmann research have considerably extended the capability of LBM to handle complex geometries. Among these, a particularly remarkable option is represented by cell‐vertex finite‐volume formulations which permit LBM to operate on fully unstructured grids. The two‐dimensional implementation of unstructured LBM, based on the use of triangular elements, has shown capability of tolerating significant grid distortions without suffering any appreciable numerical viscosity effects, to second‐order in the mesh size. In this work, we present the first three‐dimensional generalization of the unstructured lattice Boltzmann technique (ULBE as unstructured lattice Boltzmann equation), in which geometrical flexibility is achieved by coarse‐graining the lattice Boltzmann equation in differential form, using tetrahedrical grids. This 3D extension is demonstrated for the case of 3D pipe flow and moderate Reynolds numbers flow past a sphere. The results provide evidence that the ULBE has significant potential for the accurate calculation of flows in complex 3D geometries. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
This paper describes the development of a parallel three‐dimensional unstructured non‐isothermal flow solver for the simulation of the injection molding process. The numerical model accounts for multiphase flow in which the melt and air regions are considered to be a continuous incompressible fluid with distinct physical properties. This aspect avoids the complex reconstruction of the interface. A collocated finite volume method is employed, which can switch between first‐ and second‐order accuracy in both space and time. The pressure implicit with splitting of operators algorithm is used to compute the transient flow variables and couple velocity and pressure. The temperature equation is solved using a transport equation with convection and diffusion terms. An upwind differencing scheme is used for the discretization of the convection term to enforce a bounded solution. In order to capture the sharp interface, a bounded compressive high‐resolution scheme is employed. Parallelization of the code is achieved using the PETSc framework and a single program multiple data message passing model. Predicted numerical solutions for several example problems are considered. The first case validates the solution algorithm for moderate Reynolds number flows using a structured mesh. The second case employs an unstructured hybrid mesh showing the capability of the solver to describe highly viscous flows closer to realistic injection molding conditions. The final case presents the non‐isothermal filling of a thick cavity using three mesh sizes and up to 80 processors to assess parallel performance. The proposed algorithm is shown to have good accuracy and scalability. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
A vertex‐centred finite‐volume/finite‐element method (FV/FEM) is developed for solving 2‐D shallow water equations (SWEs) with source terms written in a surface elevation splitting form, which balances the flux gradients and source terms. The method is implemented on unstructured grids and the numerical scheme is based on a second‐order MUSCL‐like upwind Godunov FV discretization for inviscid fluxes and a classical Galerkin FE discretization for the viscous gradients and source terms. The main advantages are: (1) the discretization of SWE written in surface elevation splitting form satisfies the exact conservation property (??‐Property) naturally; (2) the simple centred‐type discretization can be used for the source terms; (3) the method is suitable for both steady and unsteady shallow water problems; and (4) complex topography can be handled based on unstructured grids. The accuracy of the method was verified for both steady and unsteady problems, including discontinuous cases. The results indicate that the new method is accurate, simple, and robust. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

15.
Computational morphodynamics in finite volume methods are based on the evaluation of the rate of bed level change in the vertices on the deforming bed. With the use of finite volume methods on collocated (unstructured) grids, the rate of bed level change needs to be interpolated from the mesh faces to the vertices. First, this work reviews two methods based on a vectorial shape of the bed evolution equation (no scalar contributions from storage, erosion and deposition) in terms of their mass conserving properties. Second, a method that allows for scalar contributions in the bed evolution equation (the Exner equation) is proposed for general, unstructured meshes, and an analytical derivation for the simple one‐dimensional problem on a non‐equidistantly discretised grid is considered. The solution is compared with the general two‐dimensional formulation. The two‐dimensional formulation leads to the formulation of a geometric sand sliding routine on unstructured grids. The newly proposed interpolation method and the sand sliding routine are tested, and mass conservation of the sediment is considered with special emphasis on the effect of the solution accuracy for the suspended sediment transport. Discussions on other interpolation methods and their mass conserving properties are given with a special focus of the distance weighted interpolation method directly available and easily applied in O penFOAM . Furthermore, effects from horizontal displacements of the vertices, explicit filtering of the evolving bed and morphological acceleration on global mass conservation, are discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
This paper presents a first‐order HLLC (Harten‐Lax‐Van Leer with contact discontinuities) scheme to solve the Saint‐Venant shallow‐water equations, including morphological evolution of the bed by erosion and deposition of sediments. The Exner equation is used to model the morphological evolution of the bed, while a closure equation is needed to evaluate the rate of sediment transport. The system of Saint‐Venant–Exner equations is solved in a fully coupled way using a finite‐volume technique and a HLLC solver for the fluxes, with a novel wave‐speed estimator adapted to the Exner equation. Wave speeds are usually derived by computing the eigenvalues of the full system, which is highly time‐consuming when no analytical expression is available. In this paper, an eigenvalue analysis of the full system is conducted, leading to simple but still accurate wave‐speed estimators. The new numerical scheme is then tested in three different situations: (1) a circular dam‐break flow over movable bed, (2) an one‐dimensional bed aggradation problem simulated on a 2D unstructured mesh and (3) the case of a dam‐break flow in an erodible channel with a sudden enlargement, for which experimental measurements are available. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
A two‐dimensional incompressible magneto‐hydrodynamic code is presented in order to solve the steady state or transient magnetized or neutral convection problems with the effect of heat transfer. The code utilizes a numerical matrix distribution scheme that runs on structured or unstructured triangular meshes and employs a dual time‐stepping technique with multi‐stage Runge–Kutta algorithm. The code can be used to simulate the natural convection with internal heat generation and absorption and nonlinear time‐dependent evolution of heated and magnetized liquid metals exposed to external fields. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
This article presents a new nonlinear finite‐volume scheme for the nonisothermal two‐phase two‐component flow equations in porous media. The face fluxes are approximated by a nonlinear two‐point flux approximation, where transmissibilities nonlinearly depend on primary variables. Thereby, we mainly follow the ideas proposed by Le Potier combined with a harmonic averaging point interpolation strategy for the approximation of arbitrary heterogeneous permeability fields on polygonal grids. The behavior of this interpolation strategy is analyzed, and its limitation for highly anisotropic permeability tensors is demonstrated. Moreover, the condition numbers of occurring matrices are compared with linear finite‐volume schemes. Additionally, the convergence behavior of iterative solvers is investigated. Finally, it is shown that the nonlinear scheme is more efficient than its linear counterpart. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

19.
A semi‐implicit finite difference model based on the three‐dimensional shallow water equations is modified to use unstructured grids. There are obvious advantages in using unstructured grids in problems with a complicated geometry. In this development, the concept of unstructured orthogonal grids is introduced and applied to this model. The governing differential equations are discretized by means of a semi‐implicit algorithm that is robust, stable and very efficient. The resulting model is relatively simple, conserves mass, can fit complicated boundaries and yet is sufficiently flexible to permit local mesh refinements in areas of interest. Moreover, the simulation of the flooding and drying is included in a natural and straightforward manner. These features are illustrated by a test case for studies of convergence rates and by examples of flooding on a river plain and flow in a shallow estuary. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
The present study aims to accelerate the convergence to incompressible Navier–Stokes solution. For the sake of computational efficiency, Newton linearization of equations is invoked on non‐staggered grids to shorten the sequence to the final solution of the non‐linear differential system of equations. For the sake of accuracy, the resulting convection–diffusion–reaction finite‐difference equation is solved line‐by‐line using the proposed nodally exact one‐dimensional scheme. The matrix size is reduced and, at the same time, the CPU time is considerably saved due to the decrease of stencil points. The effectiveness of the implemented Newton linearization is demonstrated through computational exercises. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号