首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
2.
In this article, we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of steady solutions of the compressible fully coupled Reynolds‐averaged Navier–Stokes and k ? ω turbulence model equations for solving all‐speed flows. The system of equations is iterated to steady state by means of an implicit scheme. The DG solution is extended to the incompressible limit by implementing a low Mach number preconditioning technique. A full preconditioning approach is adopted, which modifies both the unsteady terms of the governing equations and the dissipative term of the numerical flux function by means of a new preconditioner, on the basis of a modified version of Turkel's preconditioning matrix. At sonic speed the preconditioner reduces to the identity matrix thus recovering the non‐preconditioned DG discretization. An artificial viscosity term is added to the DG discretized equations to stabilize the solution in the presence of shocks when piecewise approximations of order of accuracy higher than 1 are used. Moreover, several rescaling techniques are implemented in order to overcome ill‐conditioning problems that, in addition to the low Mach number stiffness, can limit the performance of the flow solver. These approaches, through a proper manipulation of the governing equations, reduce unbalances between residuals as a result of the dependence on the size of elements in the computational mesh and because of the inherent differences between turbulent and mean‐flow variables, influencing both the evolution of the Courant Friedrichs Lewy (CFL) number and the inexact solution of the linear systems. The performance of the method is demonstrated by solving three turbulent aerodynamic test cases: the flat plate, the L1T2 high‐lift configuration and the RAE2822 airfoil (Case 9). The computations are performed at different Mach numbers using various degrees of polynomial approximations to analyze the influence of the proposed numerical strategies on the accuracy, efficiency and robustness of a high‐order DG solver at different flow regimes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
A high‐order triangular discontinuous Galerkin (DG) method is applied to the two‐dimensional oceanic shallow water equations. The DG method can be characterized as the fusion of finite elements with finite volumes. This DG formulation uses high‐order Lagrange polynomials on the triangle using nodal sets up to 15th order. Both the area and boundary integrals are evaluated using order 2N Gauss cubature rules. The use of exact integration for the area integrals leads naturally to a full mass matrix; however, by using straight‐edged triangles we eliminate the mass matrix completely from the discrete equations. Besides obviating the need for a mass matrix, triangular elements offer other obvious advantages in the construction of oceanic shallow water models, specifically the ability to use unstructured grids in order to better represent the continental coastlines for use in tsunami modeling. In this paper, we focus primarily on testing the discrete spatial operators by using six test cases—three of which have analytic solutions. The three tests having analytic solutions show that the high‐order triangular DG method exhibits exponential convergence. Furthermore, comparisons with a spectral element model show that the DG model is superior for all polynomial orders and test cases considered. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In this article, we develop a new airfoil shape optimization algorithm based on higher‐order adaptive DG methods with control of the discretization error. Each flow solution in the optimization loop is computed on a sequence of goal‐oriented h‐refined or hp‐refined meshes until the error estimation of the discretization error in a flow‐related target quantity (including the drag and lift coefficients) is below a prescribed tolerance. Discrete adjoint solutions are computed and employed for the multi‐target error estimation and adaptive mesh refinement. Furthermore, discrete adjoint solutions are employed for evaluating the gradients of the objective function used in the CGs optimization algorithm. Furthermore, an extension of the adjoint‐based gradient evaluation to the case of target lift flow computations is employed. The proposed algorithm is demonstrated on an inviscid transonic flow around the RAE2822, where the shape is optimized to minimize the drag at a given constant lift and airfoil thickness. The effect of the accuracy of the underlying flow solutions on the quality of the optimized airfoil shapes is investigated. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
High‐order accurate DG discretization is employed for Reynolds‐averaged Navier–Stokes equations modeling of complex shock‐dominated, unsteady flow generated by gas issuing from a shock tube nozzle. The DG finite element discretization framework is used for both the flow field and turbulence transport. Turbulent flow in the near wall regions and the flow field is modeled by the Spalart–Allmaras one‐equation model. The effect of rotation on turbulence modeling for shock‐dominated supersonic flows is considered for accurate resolution of the large coherent and vortical structures that are of interest in high‐speed combustion and supersonic flows. Implicit time marching methodologies are used to enable large time steps by avoiding the severe time step limitations imposed by the higher order DG discretizations and the source terms. Sufficiently high mesh density is used to enable crisp capturing of discontinuities. A p ? type refinement procedure is employed to accurately represent the vortical structures generated during the development of the flow. The computed solutions showed qualitative agreement with experiments. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
Discontinuous Galerkin (DG) methods have proven to be perfectly suited for the construction of very high‐order accurate numerical schemes on arbitrary unstructured and possibly nonconforming grids for a wide variety of applications, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods a p‐multigrid solution strategy has been developed, which is based on a semi‐implicit Runge–Kutta smoother for high‐order polynomial approximations and the implicit Backward Euler smoother for piecewise constant approximations. The effectiveness of the proposed approach is demonstrated by comparison with p‐multigrid schemes employing purely explicit smoothing operators for several 2D inviscid test cases. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Discontinuous Galerkin (DG) methods are very well suited for the construction of very high‐order approximations of the Euler and Navier–Stokes equations on unstructured and possibly nonconforming grids, but are rather demanding in terms of computational resources. In order to improve the computational efficiency of this class of methods, a high‐order spectral element DG approximation of the Navier–Stokes equations coupled with a p‐multigrid solution strategy based on a semi‐implicit Runge–Kutta smoother is considered here. The effectiveness of the proposed approach in the solution of compressible shockless flow problems is demonstrated on 2D inviscid and viscous test cases by comparison with both a p‐multigrid scheme with non‐spectral elements and a spectral element DG approach with an implicit time integration scheme. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

8.
The idea of hp‐adaptation, which has originally been developed for compact schemes (such as finite element methods), suggests an adaptation scheme using a mixture of mesh refinement and order enrichment based on the smoothness of the solution to obtain an accurate solution efficiently. In this paper, we develop an hp‐adaptation framework for unstructured finite volume methods using residual‐based and adjoint‐based error indicators. For the residual‐based error indicator, we use a higher‐order discrete operator to estimate the truncation error, whereas this estimate is weighted by the solution of the discrete adjoint problem for an output of interest to form the adaptation indicator for adjoint‐based adaptations. We perform our adaptation by local subdivision of cells with nonconforming interfaces allowed and local reconstruction of higher‐order polynomials for solution approximations. We present our results for two‐dimensional compressible flow problems including subsonic inviscid, transonic inviscid, and subsonic laminar flow around the NACA 0012 airfoil and also turbulent flow over a flat plate. Our numerical results suggest the efficiency and accuracy advantages of adjoint‐based hp‐adaptations over uniform refinement and also over residual‐based adaptation for flows with and without singularities.  相似文献   

9.
We extend the explicit in time high‐order triangular discontinuous Galerkin (DG) method to semi‐implicit (SI) and then apply the algorithm to the two‐dimensional oceanic shallow water equations; we implement high‐order SI time‐integrators using the backward difference formulas from orders one to six. The reason for changing the time‐integration method from explicit to SI is that explicit methods require a very small time step in order to maintain stability, especially for high‐order DG methods. Changing the time‐integration method to SI allows one to circumvent the stability criterion due to the gravity waves, which for most shallow water applications are the fastest waves in the system (the exception being supercritical flow where the Froude number is greater than one). The challenge of constructing a SI method for a DG model is that the DG machinery requires not only the standard finite element‐type area integrals, but also the finite volume‐type boundary integrals as well. These boundary integrals pose the biggest challenge in a SI discretization because they require the construction of a Riemann solver that is the true linear representation of the nonlinear Riemann problem; if this condition is not satisfied then the resulting numerical method will not be consistent with the continuous equations. In this paper we couple the SI time‐integrators with the DG method while maintaining most of the usual attributes associated with DG methods such as: high‐order accuracy (in both space and time), parallel efficiency, excellent stability, and conservation. The only property lost is that of a compact communication stencil typical of time‐explicit DG methods; implicit methods will always require a much larger communication stencil. We apply the new high‐order SI DG method to the shallow water equations and show results for many standard test cases of oceanic interest such as: standing, Kelvin and Rossby soliton waves, and the Stommel problem. The results show that the new high‐order SI DG model, that has already been shown to yield exponentially convergent solutions in space for smooth problems, results in a more efficient model than its explicit counterpart. Furthermore, for those problems where the spatial resolution is sufficiently high compared with the length scales of the flow, the capacity to use high‐order (HO) time‐integrators is a necessary complement to the employment of HO space discretizations, since the total numerical error would be otherwise dominated by the time discretization error. In fact, in the limit of increasing spatial resolution, it makes little sense to use HO spatial discretizations coupled with low‐order time discretizations. Published in 2009 by John Wiley & Sons, Ltd.  相似文献   

10.
Adjoint‐based and feature‐based grid adaptive strategies are compared for their robustness and effectiveness in improving the accuracy of functional outputs such as lift and drag coefficients. The output‐based adjoint approach strives to improve the adjoint error estimates that relate the local residual errors to the global error in an output function via adjoint variables as weight functions. A conservative adaptive indicator that takes into account the residual errors in both the primal (flow) and dual (adjoint) solutions is implemented for the adjoint approach. The physics‐based feature approach strives to identify and resolve significant features of the flow to improve functional accuracy. Adaptive indicators that represent expansions and compressions in the flow direction and gradients normal to the flow direction are implemented for the feature approach. The adaptive approaches are compared for functional outputs of three‐dimensional arbitrary Mach number flow simulations on mixed‐element unstructured meshes. Grid adaptation is performed with h‐refinement and results are presented for inviscid, laminar and turbulent flows. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

11.
In this paper we present a discontinuous Galerkin (DG) method designed to improve the accuracy and efficiency of laminar flow simulations at low Mach numbers using an implicit scheme. The algorithm is based on the flux preconditioning approach, which modifies only the dissipative terms of the numerical flux. This formulation is quite simple to implement in existing implicit DG codes, it overcomes the time‐stepping restrictions of explicit multistage algorithms, is consistent in time and thus applicable to unsteady flows. The performance of the method is demonstrated by solving the flow around a NACA0012 airfoil and on a flat plate, at different low Mach numbers using various degrees of polynomial approximations. Computations with and without flux preconditioning are performed on different grid topologies to analyze the influence of the spatial discretization on the accuracy of the DG solutions at low Mach numbers. The time accurate solution of unsteady flow is also demonstrated by solving the vortex shedding behind a circular cylinder at the Reynolds number of 100. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
An adaptive spectral/hp discontinuous Galerkin method for the two‐dimensional shallow water equations is presented. The model uses an orthogonal modal basis of arbitrary polynomial order p defined on unstructured, possibly non‐conforming, triangular elements for the spatial discretization. Based on a simple error indicator constructed by the solutions of approximation order p and p?1, we allow both for the mesh size, h, and polynomial approximation order to dynamically change during the simulation. For the h‐type refinement, the parent element is subdivided into four similar sibling elements. The time‐stepping is performed using a third‐order Runge–Kutta scheme. The performance of the hp‐adaptivity is illustrated for several test cases. It is found that for the case of smooth flows, p‐adaptivity is more efficient than h‐adaptivity with respect to degrees of freedom and computational time. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
This paper reports numerical convergence study for simulations of steady shock‐induced combustion problems with high‐resolution shock‐capturing schemes. Five typical schemes are used: the Roe flux‐based monotone upstream‐centered scheme for conservation laws (MUSCL) and weighted essentially non‐oscillatory (WENO) schemes, the Lax–Friedrichs splitting‐based non‐oscillatory no‐free parameter dissipative (NND) and WENO schemes, and the Harten–Yee upwind total variation diminishing (TVD) scheme. These schemes are implemented with the finite volume discretization on structured quadrilateral meshes in dimension‐by‐dimension way and the lower–upper symmetric Gauss–Seidel (LU–SGS) relaxation method for solving the axisymmetric multispecies reactive Navier–Stokes equations. Comparison of iterative convergence between different schemes has been made using supersonic combustion flows around a spherical projectile with Mach numbers M = 3.55 and 6.46 and a ram accelerator with M = 6.7. These test cases were regarded as steady combustion problems in literature. Calculations on gradually refined meshes show that the second‐order NND, MUSCL, and TVD schemes can converge well to steady states from coarse through fine meshes for M = 3.55 case in which shock and combustion fronts are separate, whereas the (nominally) fifth‐order WENO schemes can only converge to some residual level. More interestingly, the numerical results show that all the schemes do not converge to steady‐state solutions for M = 6.46 in the spherical projectile and M = 6.7 in the ram accelerator cases on fine meshes although they all converge on coarser meshes or on fine meshes without chemical reactions. The result is based on the particular preconditioner of LU–SGS scheme. Possible reasons for the nonconvergence in reactive flow simulation are discussed.Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, a new mathematical framework based on h, p, k and variational consistency (VC) of the integral forms is utilized to develop a finite element computational process of two‐dimensional polymer flows utilizing Oldroyd‐B constitutive model. Alternate forms of the choices of dependent variables in the governing differential equations (GDEs) are considered and is concluded that u, v, p, τ choice yielding strong form of the GDEs is meritorious over others. It is shown that: (a) since, the differential operator in the GDEs is non‐linear, Galerkin method and Galerkin method with weak form are variationally inconsistent (VIC). The coefficient matrices in these processes are non‐symmetric and hence may have partial or completely complex basis and thus the resulting computational processes may be spurious. (b) Since the VC of the VIC integral forms cannot be restored through any mathematically justifiable means, the computational processes in these approaches always have possibility of spurious solutions. (c) Least squares process utilizing GDEs in u, v, p, τ (strong form of the GDEs) variables (as well as others) is variationally consistent. The coefficient matrices are always symmetric and positive definite and hence always have a real basis and thus naturally yield computational processes that are free of spurious solutions. (d) The theoretical solution of the GDEs are generally of higher order global differentiability. Numerical simulations of such solutions in which higher order global differentiability characteristics of the theoretical solution are preserved, undoubtedly requires local approximations in higher order scalar product spaces . (e) LSP with local approximations in spaces provide an incomparable mathematical and computational framework in which it is possible to preserve desired characteristics of the theoretical solution in the computational process. Numerical studies are presented for fully developed flow between parallel plates and a lid driven square cavity. M1 fluid is used in all numerical studies. The range of applicability of the Oldroyd‐B model or lack of it is examined for both model problems for increasing De. A mathematical idealization of the corners where stationary wall meets the lid is presented and is shown to simulate the real physics when the local approximations are in higher order spaces and when hd→0. For both model problems shear rate is examined in the flow domain to establish validity of the Oldroyd‐B constitutive model. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
ABSTRACT

The high-order hybridisable discontinuous Galerkin (HDG) method is used to find steady-state solution of gas kinetic equations on two-dimensional geometry. The velocity distribution function and its traces are approximated in piecewise polynomial space on triangular mesh and mesh skeleton, respectively. By employing a numerical flux derived from the upwind scheme and imposing its continuity on mesh skeleton, the global system for unknown traces is obtained with fewer coupled degrees of freedom, compared to the original DG method. The solutions of model equation for the Poiseuille flow through square channel show the higher order solver is faster than the lower order one. Moreover, the HDG scheme is more efficient than the original DG method when the degree of approximating polynomial is larger than 2. Finally, the developed scheme is extended to solve the Boltzmann equation with full collision operator, which can produce accurate results for shear-driven and thermally induced flows.  相似文献   

16.
This paper presents a solution algorithm based on an immersed boundary (IB) method that can be easily implemented in high‐order codes for incompressible flows. The time integration is performed using a predictor‐corrector approach, and the projection method is used for pressure‐velocity coupling. Spatial discretization is based on compact difference schemes and is performed on half‐staggered meshes. A basic algorithm for body‐fitted meshes using the aforementioned solution method was developed by A. Tyliszczak (see article “A high‐order compact difference algorithm for half‐staggered grids for laminar and turbulent incompressible flows” in Journal of Computational Physics) and proved to be very accurate. In this paper, the formulated algorithm is adapted for use with the IB method in the framework of large eddy simulations. The IB method is implemented using its simplified variant without the interpolation (stepwise approach). The computations are performed for a laminar flow around a 2D cylinder, a turbulent flow in a channel with a wavy wall, and around a sphere. Comparisons with literature data confirm that the proposed method can be successfully applied for complex flow problems. The results are verified using the classical approach with body‐fitted meshes and show very good agreement both in laminar and turbulent regimes. The mean (velocity and turbulent kinetic energy profiles and drag coefficients) and time‐dependent (Strouhal number based on the drag coefficient) quantities are analyzed, and they agree well with reference solutions. Two subfilter models are compared, ie, the model of Vreman (see article “An eddy‐viscosity subgrid‐scale model for turbulent shear flow: algebraic theory and applications” in Physics and Fluids) and σ model (Nicoud et al, see article “Using singular values to build a subgrid‐scale model for large eddy simulations” in Physics and Fluids). The tests did not reveal evident advantages of any of these models, and from the point of view of solution accuracy, the quality of the computational meshes turned out to be much more important than the subfilter modeling.  相似文献   

17.
18.
The use of high‐order polynomials in discontinuous Galerkin (DG) approximations to convection‐dominated transport problems tends to cause a violation of the maximum principle in regions where the derivatives of the solution are large. In this paper, we express the DG solution in terms of Taylor basis functions associated with the cell average and derivatives at the center of the cell. To control the (derivatives of the) discontinuous solution, the values at the vertices of each element are required to be bounded by the means. This constraint is enforced using a hierarchical vertex‐based slope limiter to constrain the coefficients of the Taylor polynomial in a conservative manner starting with the highest‐order terms. The loss of accuracy at smooth extrema is avoided by taking the maximum of the correction factors for derivatives of order p and higher. No free parameters, oscillation detectors, or troubled cell markers are involved. In the case of a non‐orthogonal Taylor basis, the same limiter is applied to the vector of discretized time derivatives before the multiplication by the off‐diagonal part of the consistent mass matrix. This strategy leads to a remarkable gain of accuracy, especially in the case of simplex meshes. A numerical study is performed for a 2D convection equation discretized with linear and quadratic finite elements. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
This study presents an improved ghost‐cell immersed boundary approach to represent a solid body in compressible flow simulations. In contrast to the commonly used approaches, in the present work, ghost cells are mirrored through the boundary described using a level‐set method to farther image points, incorporating a higher‐order extra/interpolation scheme for the ghost‐cell values. A sensor is introduced to deal with image points near the discontinuities in the flow field. Adaptive mesh refinement is used to improve the representation of the geometry efficiently in the Cartesian grid system. The improved ghost‐cell method is validated against four test cases: (a) double Mach reflections on a ramp, (b) smooth Prandtl–Meyer expansion flows, (c) supersonic flows in a wind tunnel with a forward‐facing step, and (d) supersonic flows over a circular cylinder. It is demonstrated that the improved ghost‐cell method can reach the accuracy of second order in L1 norm and higher than first order in L norm. Direct comparisons against the cut‐cell method demonstrate that the improved ghost‐cell method is almost equally accurate with better efficiency for boundary representation in high‐fidelity compressible flow simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
In this contribution, we investigate strategies to perform shock‐capturing computation of steady hypersonic flow fields by means of residual distribution schemes. The ultimate objective is the computation of flow solutions for which the correct upstream enthalpy value is recovered in the postshock region. To this end, the parallelism existing between the classical Bx scheme and the stabilized finite element techniques is exploited. The simple Lax‐Friedrichs dissipation term is leveraged to build two new residual distribution schemes. Upon testing on both inviscid and viscous steady problems, solutions obtained with one of the two schemes are shown to recover the correct upstream total enthalpy level in the postshock region. This last scheme provides also improved wall pressure and skin friction predictions; heat transfer predictions are, unfortunately, similar to those offered by the Bx scheme. A conjecture for explaining this behavior is exposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号