首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
选用PolyMaxTM PLA为试样材料,利用3D打印技术制备了弧形折纸薄壁管件。基于准静态轴向压缩实验,运用ABAQUS软件对弧形折纸薄壁管件轴向准静态压缩和冲击行为进行了有限元计算,探讨了其变形模式和能量吸收特性,分析了预折角和薄壁单胞管件阵列数量对其压溃模式及能量吸收的影响。有限元计算结果与实验结果吻合较好。薄壁管件的变形过程可分为4个阶段:初始压溃阶段、预折角塑性旋转阶段、腹板塑性屈曲阶段和完全压溃密实化阶段。弧形折痕的引入能够有效地降低薄壁管件在压缩过程中的初始压溃载荷峰值,减小冲击载荷的振荡幅值。对比了高度相等、质量近似相等的方管与弧形折纸薄壁管在不同冲击速度下的压缩变形与能量吸收。在准静态压缩作用下,对于单胞模型,仅有折痕倾角为70°的模型的比吸能优于方管;对于多胞管件阵列模型,方管的比吸能均优于折纸管。折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。在动态冲击压缩下,阵列方管的比吸能均优于阵列折纸管。当冲击速度为10 m/s时,折纸管的压缩力效率和比总体效率均优于方管,其中折痕倾角为50°的模型的压缩力效率和比总体效率最高。当冲击速度为20 m/s时,仅有折痕倾角为50°的模型的压缩力效率和比总体效率优于方管。  相似文献   

2.
为提高薄壁结构的吸能能力,基于Sierpinski分形结构提出了一种具有层级特性的新型薄壁管,即Sierpinski层级管(Sierpinski hierarchical tube, SHT)。采用非线性有限元法对SHTs在轴向冲击载荷作用下的变形模式和能量吸收特性进行了数值分析,并与普通三角形薄壁管在轴向冲击载荷作用下的变形模式和能量吸收特性进行了对比。结果表明:SHTs的变形模式为轴对称渐进屈曲模式,在薄壁管中引入Sierpinski层级特性后,胞壁弯曲过程的半折叠波长减小,促使压缩过程中形成更多的塑性折叠单元,有利于提高薄壁结构能量吸收能力。进一步基于能量守恒理论和塑性铰理论对SHTs的轴向压缩应力进行理论求解,并通过有限元数值模拟验证其准确性。在相同的相对密度下,一阶、二阶及三阶SHTs的动态压缩应力较普通三角形薄壁管的动态压缩应力提高了85.8%、138.2%和183.8%。将Sierpinski层级特性引入薄壁管的设计中,能够有效提高薄壁管的耐撞性能。  相似文献   

3.
通过对自相似多孔材料的研究,给出了该结构的代表体积单元和相对密度。采用有限元方法对多孔材料面外的准静态压缩以及动态压缩进行数值模拟,分析了其变形模式,提取了应力-应变响应曲线,讨论了相对密度对多孔材料的弹性模量、平台应力、密实应变以及单位质量吸能的影响。研究发现:多孔材料在面外准静态压缩时,弹性模量、平台应力随相对密度的增大而增大,密实应变随相对密度的增大而减小;相对密度主要影响多孔材料的平台应力和弹性模量。多孔材料在面外动态压缩时,在相同的冲击速度下,多孔材料相对密度越大,其单位质量吸收的能量越多。  相似文献   

4.
纸瓦楞管是一种适用于军工/民用产品的新型缓冲防护与吸能装置,本文研究了4种正多边形纸瓦楞管在轴向跌落冲击条件下的动态压缩特性、结构参数和载荷参数对缓冲吸能特性的影响规律,结果表明,对于相同的跌落冲击载荷条件,X向纸瓦楞管发生稳定的手风琴变形模式,而Y向纸瓦楞管主要是稳态渐进屈曲变形模式与其他非理想变形模式的混合形式。X向纸瓦楞管的峰值应力低、褶皱个数较多,变形模式稳定可控,缓冲吸能特性优于Y向纸瓦楞管。随着正多边形横截面边数的增加,纸瓦楞管的总吸能变化不明显,而其他的缓冲吸能特性参数都明显下降。管长度对纸瓦楞管缓冲吸能特性影响明显,X向、Y向纸瓦楞管的总吸能随着管长度的增加而提高26.8%、70.2%,单位面积吸能增加32.2%、63.1%,但比吸能下降66.7%、34.8%,行程利用率下降10.5%、51.5%。纸瓦楞管的缓冲吸能特性参数都随着冲击质量的增加而基本上接近于线性递增关系,而随着跌落冲击能量的增加,总吸能、单位面积吸能和比吸能均有两个较小的下降,行程利用率呈现递增趋势。  相似文献   

5.
缓冲包装的结构对其缓冲性能具有重要影响。本文设计了两种胞元密度的Weaire-Phelan缓冲结构,其试样体积基本相同、用料体积一致。应用有限元方法对这两种试样受冲击后的压缩变形过程进行了分析,研究了在不同跌落高度、跌落质量下Weaire-Phelan缓冲结构的冲击承载能力和能量吸收特性。结果表明,Weaire-Phelan缓冲结构受冲击后的压缩变形过程与常见的多胞结构类似。首先顶部胞体发生叠缩,然后叠缩逐渐向下传递,最后是一个由下及上和由上及下双向同时渐进叠缩的压溃过程,与蜂窝结构从顶部到底部逐渐依次折叠的压溃方式有所不同。Weaire-Phelan缓冲结构受跌落冲击时的峰值应力、平台应力随跌落高度的增加而增大,而跌落质量对峰值应力、平台应力几乎没有影响;当胞元密度增大,Weaire-Phelan缓冲结构受跌落冲击时的平台应力略有提高,但吸能性能略有降低。本研究可为Weaire-Phelan结构的缓冲包装优化设计提供参考依据。  相似文献   

6.
为了在空间和质量约束条件下得到综合效率最优的能量吸收结构,通过数值方法分析了45#钢、6061-T6铝合金和TC4钛合金三种材料薄壁圆管在轴向压缩下的能量吸收行为,得到了材料、结构参数、内边界约束对薄壁圆管变形模式和能量吸收特性的影响。结果表明:相同厚径比时,延展性好的薄壁圆管发生渐进式压溃,而延展性差的薄壁圆管则发生轴向劈裂和渐进碎裂变形模式;结构的比能量吸收率随厚径比的增大而提高,其中钛合金管的比吸能率最高,但峰值载荷较大;当内径、高度和质量相同时,钛合金管的吸能量分别是铝合金管和钢管的1.1倍和3.1倍。此外,对于渐进压溃模式的薄壁圆管,可通过引入内边界约束改善其能量吸收特性,其比能量吸收率最大可提高13%左右。  相似文献   

7.
在方管的基础上引入折纹结构, 利用几何关系建立折纹管的折角公式。采用LS-DYNA软件研究了6种折纹管在轴向冲击下的屈曲模态与能量吸收性能, 并与方管进行对比分析。结果表明, 折纹管在冲击载荷作用下屈曲变形过程可分为3个阶段, 初始峰值阶段、稳定渐进屈曲阶段和密实化阶段。折角是影响初始峰值载荷和平均载荷的重要因素之一, 折纹结构的引入有效的降低了初始峰值载荷, 减小了冲击力的波动幅度; 折纹管的比吸能低于方管, 但是在特定折角下, 折纹管的压缩力效率和比总体效率高于方管。  相似文献   

8.
多次低强度冲击对蜂窝纸板缓冲性能的影响   总被引:1,自引:0,他引:1  
针对多次低强度冲击缓冲包装材料局部损伤研究的不完善,本文首次研究了多次低强度冲击对蜂窝纸板缓冲性能的影响。首先对蜂窝纸板进行5cm高度下的低强度多次冲击,再进行80cm高度下较高强度的一次冲击,以模拟实际产品运输过程中的冲击与跌落。通过实验获得了蜂窝纸板的载荷-位移曲线和能量吸收图。结果表明:1首次低强度冲击后蜂窝纸板出现屈曲和折叠,载荷-位移曲线出现屈曲峰值;受到重复冲击后折叠扩展,载荷-位移曲线由软弹簧变形阶段和平台阶段构成,屈曲现象不再明显,平台阶段的承载力比首次低强度冲击时的屈曲载荷下降了60%;随着低强度冲击次数的增加,蜂窝纸板在各次冲击时吸收的能量呈上升趋势;2蜂窝纸板剩余结构在经受较高强度冲击时,其载荷-位移曲线具有软弹簧变形阶段、平台阶段、密实化阶段的特征,平台阶段体现出明显的屈曲渐进过程;随着低强度冲击次数的增加,蜂窝纸板剩余结构在较高强度冲击时吸收的能量呈下降趋势。蜂窝纸板在经历多次低强度冲击后,虽有局部折叠,但仍能在一定程度上起到保护产品的作用,是一种理想的缓冲结构材料。  相似文献   

9.
针对由EPE(Polyethylene foam,聚乙烯泡沫)、瓦楞纸板、蜂窝纸板组成的复合层状结构在跌落冲击载荷作用下的缓冲防护特性,研究了加速度-冲击持续时间曲线、应力-应变曲线的特征,探讨了冲击能量对峰值应力、缓冲吸能特性的影响关系。结果表明,纸瓦楞、纸蜂窝改善了EPE的缓冲吸能特性,纸夹芯和泡沫复合层状结构的峰值应力、单位面积吸能、单位体积吸能、比吸能都随着跌落冲击能量的增加呈线性增加的趋势。在相同跌落冲击条件下,相比瓦楞与EPE复合结构,蜂窝与EPE复合结构的峰值应力平均减少了23.6%,能量吸收率平均提高了8.85%,比吸能平均提高了18.1%,缓冲吸能效果更好。  相似文献   

10.
陈霞  肖迎春 《实验力学》2013,28(2):187-192
复合材料层压板在压缩破坏过程中包含了丰富的声发射信息.为了研究含冲击损伤的复合材料层压板的压缩破坏机制,采用声发射观察层压板的压缩破坏过程,通过分析声发射信号的特征规律,表征了在压缩载荷下材料损伤的形式及其演化过程.结果表明:通过对声发射参数(撞击计数、能量、幅值、事件位置)和载荷曲线进行综合分析,发现损伤的发展过程经过了初始阶段、平稳扩展期和断裂阶段,冲击造成的分层区域最先出现屈曲并最早破坏;在损伤初始阶段和平稳扩展期间,损伤是一种渐进式的增长,层压板具有一定的承载能力;在断裂阶段损伤快速扩展,层压板的承载能力迅速下降,在出现纤维密集断裂的现象后整体破坏.  相似文献   

11.
基于板的一阶剪切理论和V on-K arm an大挠度理论,分别推导了复合材料层合板和层合梁的几何非线性有限元列式,提出了含嵌入分层的复合材料加筋层合板在受压缩载荷作用下的后屈曲有限元分析方法,对在板厚方向具有不同分层位置的加筋板结构进行了有限元数值分析,研究了不同的加筋方式及筋的分布对具有分层损伤的复合材料加筋层合板的后屈曲性态的影响,所得结果对确定在压缩载荷作用下含损伤复合材料加筋层合板的剩余承载能力具有参考价值。  相似文献   

12.
曹国鑫 《力学进展》2017,(1):227-262
基于纳米流控行为设计的新一代能量吸收耗散系统(nanofluidic en-ergy absorption system,NEAS)将会比传统吸能材料具有更高的能量吸收密度,而且还可以重复使用,特别是在小体积应用环境下具有显著的优势.本文从实验和计算模拟两方面综述了目前关于NEAS能量吸收耗散行为的最新研究进展,其中实验研究主要包括准静态压缩和动态压缩测试,计算模拟研究主要是采用基于经验势的分于动力学模拟方法.通过准静态压缩实验,可以测量NEAS模型的载荷–位移关系曲线,从而获得NEAS模型的临界渗透压强,了解卸载后系统是否能够恢复到加载前的状态(即是否可以重复使用),井通过载荷–位移关系曲线下面积估算NEAS模型的吸能密度;通过动态压缩实验可以测量NEAS模型对脉冲载荷的缓冲保护作用,主要体现为降低脉冲载荷幅值和扩展脉冲宽度.计算模型研究可以明确给出NEAS对外载荷的微观响应,从而可以准确了解NEAS的能量吸收耗散机制以及吸能密度的主要影响因素.本研究可以帮助我们全面了解NEAS的研究进展,为NEAS的设计与优化提供重要指导.  相似文献   

13.
为考察脆性空心颗粒在冲击载荷作用下的应变率效应和破碎行为的细观机理,以粉煤灰漂珠为研究对象,基于低速冲击实验和有限元数值模拟,对比了典型空心颗粒材料在不同加载速率下的力学响应特性和细观压溃行为,阐释了材料宏观应变率效应产生的细观机理,获得以下结果。(1)在0.001~300 s?1应变率范围,漂珠颗粒的破碎率和Hardin破碎势平均提升了约21%和10%~30%,材料比吸能提升了50%~125%,比吸能的额外增加主要与动态颗粒滑移产生的摩擦耗能相关。颗粒平均尺寸较大的试样体现出更强的应变率效应。(2)初始压溃阶段的应力应变响应特征的数值模拟结果与实验结果较吻合,低速冲击下动态二次压溃现象产生的细观机理为动态颗粒滑移和压紧行为对加载速率的依赖性。(3) 数值模拟表明,冲击加载下产生相同应变时颗粒的损伤程度和范围大于准静态加载,这与实验所得破碎势随应变率增加的结果一致。对比低速冲击实验的相对破碎势分析和细观数值模拟结果可知,脆性颗粒堆积材料在动态冲击下表现出的宏观应变率效应主要归因于颗粒压溃行为的率敏感性和动态加载下颗粒破碎能量利用率的降低。  相似文献   

14.
基于纳米流控行为设计的新一代能量吸收耗散系统(nanofluidic energy absorption system,NEAS)将会比传统吸能材料具有更高的能量吸收密度,而且还可以重复使用,特别是在小体积应用环境下具有显著的优势.本文从实验和计算模拟两方面综述了目前关于NEAS能量吸收耗散行为的最新研究进展,其中实验研究主要包括准静态压缩和动态压缩测试,计算模拟研究主要是采用基于经验势的分子动力学模拟方法.通过准静态压缩实验,可以测量NEAS模型的载荷-位移关系曲线,从而获得NEAS模型的临界渗透压强,了解卸载后系统是否能够恢复到加载前的状态(即是否可以重复使用),并通过载荷-位移关系曲线下面积估算NEAS模型的吸能密度;通过动态压缩实验可以测量NEAS模型对脉冲载荷的缓冲保护作用,主要体现为降低脉冲载荷幅值和扩展脉冲宽度.计算模型研究可以明确给出NEAS对外载荷的微观响应,从而可以准确了解NEAS的能量吸收耗散机制以及吸能密度的主要影响因素.本研究可以帮助我们全面了解NEAS的研究进展,为NEAS的设计与优化提供重要指导.  相似文献   

15.
Guoxin CAO 《力学进展》1971,47(1):201707
基于纳米流控行为设计的新一代能量吸收耗散系统(nanofluidic en-ergy absorption system,NEAS)将会比传统吸能材料具有更高的能量吸收密度,而且还可以重复使用,特别是在小体积应用环境下具有显著的优势.本文从实验和计算模拟两方面综述了目前关于NEAS能量吸收耗散行为的最新研究进展,其中实验研究主要包括准静态压缩和动态压缩测试,计算模拟研究主要是采用基于经验势的分子动力学模拟方法.通过准静态压缩实验,可以测量NEAS模型的载荷–位移关系曲线,从而获得NEAS模型的临界渗透压强,了解卸载后系统是否能够恢复到加载前的状态(即是否可以重复使用),并通过载荷–位移关系曲线下面积估算NEAS模型的吸能密度;通过动态压缩实验可以测量NEAS模型对脉冲载荷的缓冲保护作用,主要体现为降低脉冲载荷幅值和扩展脉冲宽度.计算模型研究可以明确给出NEAS对外载荷的微观响应,从而可以准确了解NEAS的能量吸收耗散机制以及吸能密度的主要影响因素.本研究可以帮助我们全面了解NEAS的研究进展,为NEAS的设计与优化提供重要指导.  相似文献   

16.
多孔泡沫牺牲层的动态压溃及缓冲吸能机理研究   总被引:1,自引:0,他引:1  
本文对强动载荷下多孔泡沫牺牲层的动态压溃行为及缓冲吸能机理进行了研究. 基于刚性-理想塑性-锁定(R-PP-L)及刚性-塑性硬化(R-PH)两类多孔泡沫材料本构, 建立了强动载荷下多孔泡沫牺牲层动态响应的理论分析模型, 分析了一维冲击波在多孔泡沫牺牲层中的传播规律; 利用Voronoi方法建立了多孔泡沫牺牲层的二维细观有限元模型, 获得了冲击载荷下多孔泡沫牺牲层的变形模式和动态响应曲线, 讨论了多孔泡沫材料的层间界面效应对多孔泡沫牺牲层缓冲吸能的影响. 研究结果表明, 考虑多孔泡沫材料塑性硬化影响的理论分析模型能够预测入射波在远端的反射及对多孔泡沫牺牲层的二次压缩过程和端部应力增强现象; 相比较存在界面的多孔泡沫牺牲层, 连续设计的多孔泡沫牺牲层可增强其缓冲吸能能力, 但在界面处增加设计刚性面板则能够降低界面胞元不完整对缓冲吸能的影响; 相同冲量载荷下, 端部应力峰值随冲击能量增大而增大, 而端部冲击波的反射可能是端部应力增强的主要诱因.   相似文献   

17.
三种加载方向下云杉静动态力学性能研究   总被引:3,自引:0,他引:3  
利用INSTRON和Hopkinson压杆对含水率为12.72%, 密度为413kg/m^{3}云杉木材试件沿顺纹、横纹径向和横纹弦向进行准静态和动态压缩实验, 获得了云杉木材3个方向的抗压模量、准静态压缩应力应变曲线和3种应变率下的动态应力应变曲线. 结果表明云杉木材沿顺纹方向加载破坏形式表现为木材纤维轴向屈曲、褶皱; 横纹径向和弦向加载失效行为表现为木材纤维间的滑移破坏. 云杉顺纹方向抗压弹性模量最大, 分别约为横纹径向抗压弹性模量的21倍和横纹弦向抗压弹性模量的32倍; 横纹径向和弦向准静态压缩屈服应力基本相等, 试件沿顺纹方向准静态压缩屈服应力约为横纹径向和弦向屈服应力的9倍; 动态压缩屈服强度具有率敏感性, 在应变率为500-1000s^{-1}动态压缩实验中顺纹、横纹径向和弦向动压屈服强度均随着应变率的增加而显著提高. 同时对不同方向压缩下木材胞壁失效行为进行了理论分析, 表明产生完全压缩失效的平均极限载荷与胞壁屈服强度、胞元结构和产生的褶皱长度相关.   相似文献   

18.
通过试验结合有限元方法,针对蜂窝夹芯结构的无损件和三种冲击损伤件开展了单轴压缩载荷下的失效模式研究,同时考虑了胶层性能与损伤尺寸的影响。研究结果表明:试验和有限元方法得到的损伤模式及起始损伤位置相同;不同冲击损伤位置可导致结构的整体承载能力不同,下降的范围为10%~20%。其中:损伤位于顶面区时承载能力下降最为严重,损伤位于边缘区时承载能力下降最少;面芯界面胶层性能的不同会使结构材料破坏顺序改变,胶层断裂能较低时夹芯结构由蜂窝芯破坏向层间破坏转变;冲击能量不同引起结构损伤程度不同,随着损伤深度的增加,结构破坏的危险位置由中心转向边缘。  相似文献   

19.
本文研究在面内压缩载荷和横向载荷同时作用下的薄板后屈曲问题。应用能量原理建立受面内压缩载荷和横向载荷共同作用时板的大挠度能量泛函,直接用最优化方法求上述能量泛函的极小值,从而得到了薄板的后屈曲平衡路径。所得结果同前人的解析解一致。文中分三种情况讨论了横向载荷对受压薄板的后屈曲性能的影响。  相似文献   

20.
研究在轴向冲击载荷下弹性圆柱壳动态屈曲问题.通过构造哈密顿体系,在辛空间中将临界载荷和动态屈曲模态归结为辛本征值和本征解问题.辛本征解反映了局部的压缩屈曲模态和整体的弯曲屈曲模态,特别是在冲击端为自由支承边界时的特殊屈曲方式.数值结果给出了具体的临界载荷和屈曲模态规律.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号