首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The problem of a mode-II crack close to and perpendicular to an imperfect interface of two bonded dissimilar materials is investigated.The imperfect interface is modelled by a linear spring with the vanishing thickness.The Fourier transform is used to solve the boundary-value problem and to derive a singular integral equation with the Cauchy kernel.The stress intensity factors near the left and right crack tips are evaluated by numerically solving the resulting equation.Several special cases of the mode-II crack problem with an imperfect interface are studied in detail.The effects of the interfacial imperfection on the stress intensity factors for a bimaterial system of aluminum and steel are shown graphically.The obtained observation reveals that the stress intensity factors are dependent on the interface parameters and vary between those with a fully debonded interface and those with a perfect interface.  相似文献   

2.
Interaction between a screw dislocation dipole and a mode III interface crack is investigated. By using the complex variable method, the closed form solutions for complex potentials are obtained when a screw dislocation dipole lies inside a medium. The stress fields and the stress intensity factors at the tip of the interface crack produced by the screw dislocation dipole are given. The influence of the orientation, the dipole arm and the location of the screw dislocation dipole as well as the material mismatch on the stress intensity factors is discussed. The image force and the image torque acting on the screw dislocation dipole center are also calculated. The mechanical equilibrium position of the screw dislocation dipole is examined for various material property combinations and crack geometries. The results indicate that the shielding or anti-shielding effect on the stress intensity factor increases abruptly when the dislocation dipole approaches the tip of the crack. Additionally, the disturbation of the interface crack on the motion of the dislocation dipole is also significant.  相似文献   

3.
The present problem is concerned with the study of deformation of a rotating generalized thermoelastic solid with an overlying infinite thermoelastic fluid due to different forces acting along the interface under the influence of gravity.The components of displacement,force stress,and temperature distribution are first obtained in Laplace and Fourier domains by applying integral transforms,and then obtained in the physical domain by applying a numerical inversion method.Some particular cases are also discussed in the context of the problem.The results are also presented graphically to show the effect of rotation and gravity in the medium.  相似文献   

4.
The thermal and thermo-elastic-plastic response of newly developed ceramic-metalfunctionally graded materials under a thermal shock load is studied.The materials are heated at the ce-ramic surface with a sudden high-intensity heat flux input,and cooled at the metal surface with aflowing liquid nitrogen.Emphasis is placed on two aspects:(1)the influence of the graded composi-tion of the materials on the temperature and stress response;and(2)the optimum design of the gradedcomposition from a unified viewpoint of the heat insulation property and stress relaxation property.Moreover,a comparison between the thermoelastic stress and the thermo-elastic-plastic stress is alsomade to indicate the plasticity effect.  相似文献   

5.
This paper studies the fracture behavior of a thermoelastic cylinder subjected to a sudden temperature change on its outer surface within the framework of non-classical heat conduction.The heat conduction equation is solved by separation of variable technique.Closed form solution for the temperature field and the associated thermal stress are established.The critical parameter governing the level of the transient thermal stress is identified.Exact expression for the transient stress intensity factor is obtained for a crack in the cylinder.The difference between the non-classical solutions and the classical solution are discussed.It is found that the traditional classical heat conduction considerably underestimates the transient thermal stress and thermal stress intensity factor.  相似文献   

6.
In this paper, thermoelastic problem of onedimensional copper rod under thermal shock is simulated using molecular dynamics method by adopting embedded atom method potential. The rod is on axis x, the left outermost surface of which is traction free and the right outermost surface is fixed. Free boundary condition is imposed on the outermost surfaces in direction y and z. The left and right ends of the rod are subjected to hot and cold baths, respectively. Temperature, displacement and stress distributions are obtained along the rod at different moments, which are shown to be limited in the mobile region, indicating that the heat propagation speed is limited rather than infinite. This is consistent with the prediction given by generalized thermoelastic theory. From simulation results we find that the speed of heat conduction is the same as the speed of thermal stress wave. In the present paper, the simulations are conducted using the large-scale atomic/molecular massively parallel simulator and completed visualization software.  相似文献   

7.
This paper is concerned with the numerical technique based on the method of character-istics for three-dimensional dynamic thermoelastic problems. A numerical example for the three-di-mensional stress wave propagation in a thermoelastic bar of square cross section subjected to both animpact loading and a thermal shock is presented.  相似文献   

8.
For a compression-shear mixed mode interface crack, it is difficult to solve the stress and strain fields considering the material viscosity, the crack-tip singularity, the frictional effect, and the mixed loading level. In this paper, a mechanical model of the dynamic propagation interface crack for the compression-shear mixed mode is proposed using an elastic-viscoplastic constitutive model. The governing equations of propagation crack interface at the crack-tip are given. The numerical analysis is performed for the interface crack of the compression-shear mixed mode by introducing a displacement function and some boundary conditions. The distributed regularities of stress field of the interface crack-tip are discussed with several special parameters. The final results show that the viscosity effect and the frictional contact effect on the crack surface and the mixed-load parameter are important factors in studying the mixed mode interface crack- tip fields. These fields are controlled by the viscosity coefficient, the Mach number, and the singularity exponent.  相似文献   

9.
The problem of a screw dislocation interacting with a circular nano-inhomogeneity near a bimaterial interface is investigated. The stress boundary condition at the interface between the inhomogeneity and the matrix is modified by incorporating surface/interface stress. The analytical solutions to the problem in explicit series are obtained by an efficient complex variable method associated with the conformal mapping function. The image force exerted on the screw dislocation is also derived using the generalized Peach–Koehler formula. The results indicate that the elastic interference of the screw dislocation and the nano-inhomogeneity is strongly affected by a combination of material elastic dissimilarity, the radius of the inclusion, the distance from the center of inclusion to the bimaterial interface, and the surface/interface stress between the inclusion and the matrix. Additionally, it is found that when the inclusion and Material 3 are both harder than the matrix( μ_1 μ_2 and μ_3 μ_2), a new stable equilibrium position for the screw dislocation in the matrix appears near the bimaterial interface; when the inclusion and Material 3 are both softer than the matrix( μ_1 μ_2 and μ_3 μ_2), a new unstable equilibrium position exists close to the bimaterial interface.  相似文献   

10.
Coupled thermo-mechanical analysis of two bonded functionally graded materials subjected to thermal loads is conducted in this study with the graded finite element method. The thermal-mechanical properties of the bi-material interfaces are classified based on discontinuity degrees of their material properties and their derivatives at the interfaces. Numerical results indicate that discontinuity exerts remarkable effect on the temperature profile and stress value at the interface of two bonded functionally-graded materials. Under the thermal flux loading conditions, the stronger the interface discontinuity is, the smaller the heat flux is.  相似文献   

11.
本文基于Mori-Tanaka理论,考虑了界面相对超磁致伸缩复合材料的有效性能的影响,得到了具有界面相的超磁致伸缩复合材料的有效性能的一般解析表达。考虑到固化过程中热残余应力对超磁致伸缩复合材料有效性能的影响,通过数值计算,给出超磁致伸缩复合材料有效弹性模量、有效磁致伸缩应变及有效热膨胀系数随夹杂物长径比、体分比、界面参数和固化热残余应力的变化特征曲线,数值结果表明:界面和固化热残余应力对于超磁致复合材料有效性能的影响是显著的。  相似文献   

12.
基于细观力学方法的混凝土热膨胀系数预测   总被引:2,自引:0,他引:2  
建立混凝土材料的有效性质与微结构参数之间的关系,是混凝土材料优化设计的基础。本文用细观力学方法对复合材料宏观有效热膨胀系数进行研究,得到了含有一球形夹杂物的无限大介质在均匀变温作用下的应力场。假定混凝土为由骨料和砂浆基质组成的二相复合材料,根据混凝土宏观体积热膨胀量与组成混凝土的各相介质细观体积热膨胀量相等的原则,采用基于Mori-Tanaka方法的混凝土宏观有效剪切模量,推导出混凝土有效热膨胀系数的解答。对稀疏解法、自洽方法和有限单元数值试验结果的比较说明,本文提出的基于自洽方法的混凝土宏观有效热膨胀系数的理论公式能够较好的描述混凝土的热学特性,该方法可以推广到多相复合材料宏观有效热膨胀系数的预测中。  相似文献   

13.
Summary  We consider a linearly thermoelastic composite medium, which consists of a homogeneous matrix containing a statistically inhomogeneous random set of ellipsoidal uncoated or coated inclusions, where the concentration of the inclusions is a function of the coordinates (functionally graded material). Effective properties, such as compliance and thermal expansion coefficient, as well as first statistical moments of stresses in the components are estimated for the general case of inhomogeneity of the thermoelastic inclusion properties. The micromechanical approach is based on the Green function technique as well as on the generalization of the multiparticle effective field method (MEFM), previously proposed for the research of statistically homogeneous random structure composites. The hypothesis of effective field homogeneity near the inclusions is used; nonlocal effects of overall constitutive relations are not considered. Nonlocal dependences of local effective thermoelastic properties as well as those of conditional averages of the stresses in the components on the concentration of the inclusions are demonstrated. Received 11 November 1999; accepted for publication 4 May 2000  相似文献   

14.
建立了正交各向异性材料热弹性问题的三维无网格伽辽金(Element Free Galerkin, EFG)法计算模型。利用该计算模型对三维复合材料汽轮机叶轮和轴承座进行了热弹性分析,对比了材料方向角及热导率因子、热膨胀系数因子和拉压弹性模量因子不同组合情况下轴承座的最大热变形总位移和当量应力值,讨论了材料方向角及上述正交各向异性因子对热变形和当量应力的影响规律,并与各向同性材料进行了对比。结果表明:三维EFG模型的热变形总位移和当量应力相对误差范数分别比有限元法小0.1215%和0.1359%;材料方向角同时影响热变形的大小和方向,但对当量应力方向影响不大;正交各向异性材料因子主要影响热变形和当量应力的大小。在考虑热-机械载荷作用下的三维复合材料零件结构设计中,当以刚度或强度为主要需求时,材料方向角、热导率因子、热膨胀系数因子、拉压弹性模量因子分别在(45°~60°,8:1:4~10:1:5,(1/6):(1/5):1~(1/5):(1/4):1,(7/5):1:(9/5)~(3/2):1:2)或(0°~10°,(1/10):1:(1/5)~(1/8):1:(1/4),(1/5):1:(1/6)~(1/4):1:(1/5),1:(1/5):(1/10)~1:(1/4):(1/8))范围内取值能有效降低轴承座等结构的热变形和当量应力。  相似文献   

15.
We study the thermo-elastic properties of heterogeneous materials containing spherical particles or cylindrical fibres. The interface between the matrix and second-phase inhomogeneity is imperfect with either the displacement or the stress experiencing a jump across it. We relate the effective coefficient of thermal expansion (CTE) to the effective elastic moduli and thereby generalize Levin's formula, and reveal two connections among the effective elastic moduli, thereby generalizing Hill's connections. In contrast to the classical results, the effective CTE in the presence of an imperfect interface is strongly dependent on the size of the inhomogeneity, besides the interface elastic and thermo-elastic properties. This size dependence has been accurately captured by simple scaling laws.  相似文献   

16.
Composites made of semi-crystalline polymers and nanoparticles have a spherulitic microstructure which can be reasonably represented by a spherically anisotropic volume element. Due to the high surface-to-volume ratio of a nanoparticle, the particle-matrix interface stress, usually neglected in determining the effective elastic moduli of particle-reinforced composites, may have a non-negligible effect. To account for the latter in estimating the effective thermoelastic properties of a composite consisting of nanoparticles embedded in a semi-crystalline polymeric matrix, this work adopts a coherent interface model for the nanoparticle-matrix interface and proposes an extended version of the classical generalized-self consistent method. In particular, Eshelby's formulae widely used to calculate the elastic energy change of a homogeneous medium due to the introduction of an inhomogeneity are extended to the thermoelastic case. The nanoparticle size effect on the effective thermoelastic moduli of the composite are theoretically shown and numerically illustrated.  相似文献   

17.
We construct a mathematical model describing thermomechanical interaction between composite structure elements (isotropic particles of the matrix and anisotropic short fibers) and the macroscopically isotropic elastic medium with desired thermoelastic characteristics. At the first stage of this model, the self-consistency method is used to obtain relations determining the elasticity moduli of the composite, and at the second stage, the model permits determining its linear thermal expansion coefficient. The dual variational statement of the linear thermoelasticity problem in an inhomogeneous solid permits obtaining two-sided estimates for the bulk elasticity modulus, shear modulus, and linear thermal expansion coefficient of the composite under study. The calculated dependencies presented in the paper permit predicting the thermoelastic characteristics of a composite reinforced by anisotropic short fibers (including those in the form of nanostructure elements).  相似文献   

18.
The paper presents an analytical method to investigate thermal effects on interfacial stress transfer characteristics of single/multi-walled carbon nanotubes/polymer composites system under thermal loading by means of thermoelastic theory and conventional fiber pullout models. In example calculations, the mechanical properties and the thermal expansion coefficients of carbon nanotubes and polymer matrix are, respectively, treated as the functions of temperature change. Numerical examples show that the interfacial shear stress transfer behavior can be described and affected by several parameters such as the temperature field, volume fraction of CNT, and numbers of wall layer and the outermost radius of carbon nanotubes. From the results carried out it is found that mismatch of thermal expansion coefficients between the carbon nanotubes and polymer matrix may be more important in governing interfacial stress transfer characteristics of carbon nanotubes/polymer composite system.  相似文献   

19.
SMA短纤维复合材料的热胀系数和相变应变系数   总被引:4,自引:0,他引:4  
基于Eshelby的等效夹杂模型、Mori和Tanaka的场平均法,考虑到形状记忆合金(SMA)的强物理非线性,发展了增量型的等效夹杂模型(Incremental Equivalent Inclusion Model)。讨论了SMA短纤维增强的铝基复合材料的热胀系数和相变应变系数。特别研究了SMA短纤维复合材料纤维几何尺寸和体积分数等参数对SMA复合材料的热胀系数和相变应变系数的影响。这些工作对于指导材料设计和了解SMA复合材料热机械特性是非常有意义的。  相似文献   

20.
基于SiC/Al基复合材料中的SiC颗粒周期性排布的假设,采用轴对称体胞方法研究了金属基复合材料中的热残余应变场与粒子形状、体积分数等参数间的内在联系;在此基础上,探讨了热残余应变对夹杂内部和基体—夹杂界面的应力集中因子的影响.所得结果对于理解热残余应变对空洞形核的影响有参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号