首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于线性压电理论,本文获得了含有中心反平面裂纹的矩形压电体中的奇异应力和电场。利用Fourier积分变换和Fourier正弦级数将电绝缘型裂纹问题化为对偶积分方程,并进一步归结为易于求解的第二类Fred-holm积分方程。获得了裂纹尖端应力、应变、电位移和电场的解析解,求得了裂纹尖端场的强度因子及能量释放率。分析了压电矩形体的几何尺寸对它们的影响。结果表明,对于电绝缘型裂纹,裂纹尖端附近的各个场变量都具有-1/2阶的奇异性,能量释放率与电荷载的方向及大小有关,并且有可能为负值。  相似文献   

2.
The dynamic field intensity factors and energy release rates in a rectangular piezoelectric ceramic medium containing a center crack are obtained for boundary conditions of a permeable and an impermeable crack under electro-mechanical impact loading. An integral transform method is used to reduce the problem to two pairs of dual integral equations, which are then expressed as Fredholm integral equations of the second kind. Numerical values on the dynamic energy release rate are obtained to show the dependences upon the geometry and electric field.  相似文献   

3.
The solution of a 3-D rectangular permeable crack in a piezoelectric/piezomagnetic composite material was investigated by using the generalized Almansi’s theorem and the Schmidt method.The problem was formulated through Fourier transform into three pairs of dual integral equations,in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations,the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials.Finally,the relations between the electric filed,the magnetic flux field and the stress field near the crack edges were obtained and the efects of the shape of the rectangular crack on the stress,the electric displacement and magnetic flux intensity factors in a piezoelectric/piezomagnetic composite material were analyzed.  相似文献   

4.
A constant moving crack in a magnetoelectroelastic material under in-plane mechanical, electric and magnetic loading is studied for impermeable crack surface boundary conditions. Fourier transform is employed to reduce the mixed boundary value problem of the crack to dual integral equations, which are solved exactly. Steady-state asymptotic fields near the crack tip are obtained in closed form and the corresponding field intensity factors are expressed explicitly. The crack speed influences the singular field distribution around the crack tip and the effects of electric and magnetic loading on the crack tip fields are discussed. The crack kinking phenomena is investigated using the maximum hoop stress intensity factor criterion. The magnitude of the maximum hoop stress intensity factor tends to increase as the crack speed increases.  相似文献   

5.
The anti-plane fracture problem for a finite crack in a one-dimensional hexagonal quasicrystal strip is analyzed. By using Fourier transforms, the mixed boundary value problems are reduced to the dual integral equations. The solution of the dual integral equations is then expressed by the complete elliptic integrals of the first and the third kinds. The expressions for stress, strains, displacements and field intensity factors of the phonon and phason fields near the crack tip are obtained exactly. The path-independent integral derived by a conservation law equals the energy release rate, which can be used as a fracture criterion for a mode III fracture problem.  相似文献   

6.
In this paper, the interactions of multiple parallel symmetric and permeable finite length cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading are studied by the Schmidt method.The problem is formulated through Fourier transform into dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces.To solve the dual integral equations, the displacement jumps across the crack surfaces are directly expanded as a series of Jacobi polynomials.Finally, the relation between the electric field, the magnetic flux field and the stress field near the crack tips is obtained.The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the length and spacing of the cracks.It is also revealed that the crack shielding effect presents in piezoelectric/piezomagnetic materials.  相似文献   

7.
The behavior of a penny shaped crack in a three-dimensional piezoelectric ceramic strip under non-axisymmetric in-plane normal mechanical and electrical loads is analyzed based on the continuous electric boundary conditions of the crack surface. The potential theory, Hankel transform and Fourier series are used to obtain the systems of dual integral equations, which are then expressed as Fredholm integral equations. The singular mechanical and electric fields and all mode-I field intensity factors are obtained, and the numerical values of various field intensity factors for PZT-6B piezoelectric ceramic are shown graphically for an uniform load and a pair of concentrated load, respectively.  相似文献   

8.
The dynamic behavior of two parallel symmetric cracks in functionally graded piezoelectric/piezomagnetic materials subjected to harmonic antiplane shear waves is investigated using the Schmidt method. The present problem can be solved using the Fourier transform and the technique of dual integral equations, in which the unknown variables are jumps of displacements across the crack surfaces, not dislocation density functions. To solve the dual integral equations, the jumps of displacements across the crack surfaces are directly expanded as a series of Jacobi polynomials. Finally, the relations among the electric, magnetic flux, and dynamic stress fields near crack tips can be obtained. Numerical examples are provided to show the effect of the functionally graded parameter, the distance between the two parallel cracks, and the circular frequency of the incident waves upon the stress, electric displacement, and magnetic flux intensity factors at crack tips.  相似文献   

9.
In this paper, the behavior of three parallel non-symmetric permeable cracks in a piezoelectric/piezomagnetic material plane subjected to anti-plane shear stress loading was studied by the Schmidt method. The problem was formulated through Fourier transform into three pairs of dual integral equations, in which unknown variables are jumps of displacements across the crack surfaces. To solve the dual integral equations, the jumps of displacements across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the relations among the electric displacement, the magnetic flux and the stress fields near the crack tips can be obtained. The results show that the stress, the electric displacement and the magnetic flux intensity factors at the crack tips depend on the lengths and spacing of cracks. It was also revealed that the crack shielding effect is present in piezoelectric/piezomagnetic materials.  相似文献   

10.
We consider the problem of determining the singular stresses and electric fields in a piezoelectric ceramic strip containing an eccentric Griffith crack off the centre line bonded to two elastic half planes under anti-plane shear loading using the continuous crack-face condition. Fourier transforms are used to reduce the problem to the solution of two pairs of dual integral equations, which are then expressed to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor and energy release rate are obtained.  相似文献   

11.
The solutions of a 3-D rectangular limited-permeable crack or two 3-D rectangular limited-permeable cracks in piezoelectric materials were given by using the generalized Almansi’s theorem and the Schmidt method. At the same time, the electric permittivity of the air inside the rectangular crack was considered. The problem was formulated through Fourier transform as three pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the effects of the electric permittivity of the air inside the rectangular crack,the shape of the rectangular crack and the distance between two rectangular cracks on the stress and electric displacement intensity factors in piezoelectric materials were analyzed.  相似文献   

12.
Summary  In a hybrid laminate containing an interfacial crack between piezoelectric and orthotropic layers, the dynamic field intensity factors and energy release rates are obtained for electro-mechanical impact loading. The analysis is performed within the framework of linear piezoelectricity. By using integral transform techniques, the problem is reduced to the solution of a Fredholm integral equation of the second kind, which is obtained from one pair of dual integral equations. Numerical results for the dynamic stress intensity factor show the influence of the geometry and electric field. Received 29 June 2001; accepted for publication 3 December 2001  相似文献   

13.
Summary  The problem of an interface edge crack between two bonded quarter-planes of dissimilar piezoelectric materials is considered under the conditions of anti-plane shear and in-plane electric loading. The crack surfaces are assumed to be impermeable to the electric field. An integral transform technique is employed to reduce the problem under consideration to dual integral equations. By solving the resulting dual integral equations, the intensity factors of the stress and the electric displacement and the energy release rate as well as the crack sliding displacement and the electric voltage across the crack surfaces are obtained in explicit form for the case of concentrated forces and free charges at the crack surfaces and at the boundary. The derived results can be taken as fundamental solutions which can be superposed to model more realistic problems. Received 10 November 2000; accepted for publication 28 March 2001  相似文献   

14.
Magnetoelectroelastic analysis of a cracked piezoelectromagnetic solid is made within the framework of the theory of linear magnetoelectroelasticity. The associated mixed boundary-value problem is solved by the Fourier integral transform. For general electromagnetic crack-face boundary conditions, a full magnetoelectroelastic field in the entire plane induced by a crack is obtained explicitly, and field intensity factors and energy release rate are given. The influences of applied electric and magnetic loadings on the energy release rate, the strain intensity factor, and the stress distribution are presented graphically.  相似文献   

15.
The solutions of a 3-D rectangular permeable crack and two 3-D rectangular permeable cracks in a piezoelectric material were investigated by using the generalized Almansi’s theorem and the Schmidt method. The problem was formulated through Fourier transform into three pairs of dual integral equations, in which the unknown variables are the displacement jumps across the crack surfaces. To solve the dual integral equations, the displacement jumps across the crack surfaces were directly expanded as a series of Jacobi polynomials. Finally, the effects of the shape of the rectangular crack and the distance between two rectangular cracks on the stress and electric displacement intensity factors in a piezoelectric material were analyzed. These results can be used for the strength and the coupling effect evaluation of cracked piezoelectric materials.  相似文献   

16.
Following the theory of linear piezoelectricity,we consider the electro-elastic prob-lems of a finite crack in a functionally gradient piezoelectric ceramic strip.By the use of Fouriertransforms we reduce the problem to solving two pairs of dual integral equations.The solution tothe dual integral equations is then expressed in terms of a Fredholm integral equation of the secondkind.Numerical calculations are carried out for piezoelectric ceramics.The electric field intensityfactors and the energy release rate are shown graphically,and the electroelastic interactions areillustrated.  相似文献   

17.
Following the theory of linear piezoelectricity, we consider the electro-elastic problems of a finite crack in a functionally gradient piezoelectric ceramic strip. By the use of Fourier transforms we reduce the problem to solving two pairs of dual integral equations. The solution to the dual integral equations is then expressed in terms ofa Fredholm integral equation of the second kind. Numerical calculations are carried out for piezoelectric ceramics. The electric field intensity factors and the energy release rate are shown graphically, and the electroelastic interactions are illustrated.  相似文献   

18.
Extending the polarization saturation model [Gao et al., 1997. Local and global energy release rates for an electrically yielded crack in a piezoelectric ceramic. J. Mech. Phys. Solids 45, 491-510] and the dielectric breakdown (DB) model [Zhang et al., 2005. The strip dielectric breakdown model. Int. J. Fract. 132, 311-327] in piezoelectric materials, the Strip Electric-Magnetic Breakdown (SEMB) model is proposed for electrically and magnetically impermeable crack in a magnetoelectroelastic medium to study the effect of the nonlinear character of electric field and magnetic field on fracture of magnetoelectroelastic materials. In the SEMB model, the electric field in the strip of the electric breakdown zone ahead of the crack tip is equal to the electric breakdown strength, while the magnetic filed in the strip of the magnetic breakdown zone is equal to the magnetic breakdown strength. By using the extended Stroh formalism and the extended dislocation modeling of a crack, the Griffith crack problem under the electrically and magnetically elastic-plastic condition in a magnetoelectroelastic medium is reduced to a set of dual integral equations. The sizes of the electric breakdown zone and the magnetic breakdown zone, the extended intensity factors and the local J-integral are obtained. The effect of the combined mechanical-electric-magnetic loadings on the local J-integral is studied.  相似文献   

19.
The electroelastic response of a penny-shaped crack in a piezoelectric cylindrical fiber embedded in an elastic matrix is investigated in this study. Fourier and Hankel transforms are used to reduce the problem to the solution of a pair of dual integral equations. They are then reduced to a Fredholm integral equation of the second kind. Numerical values on the stress intensity factor, energy release rate and energy density factor for piezoelectric composites are obtained to show the influence of applied electric fields.  相似文献   

20.
In this paper, the dynamic behavior of a permeable crack in functionally graded piezoelectric/piezomagnetic materials is investigated. To make the analysis tractable, it is assumed that the material properties vary exponentially with the coordinate parallel to the crack. By using the Fourier transform, the problem can be solved with the help of a pair of dual integral equations in which the unknown is the jump of displacements across the crack surfaces. These equations are solved to obtain the relations between the electric filed, the magnetic flux field and the dynamic stress field near the crack tips using the Schmidt method. Numerical examples are provided to show the effect of the functionally graded parameter and the circular frequency of the incident waves upon the stress, the electric displacement and the magnetic flux intensity factors of the crack.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号