首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The nonlinear large deflection theory of cylindrical shells is extended to discuss nonlinear buckling and postbuckling behaviors of functionally graded (FG) cylindrical shells which are synchronously subjected to axial compression and lateral loads. In this analysis, the non-linear strain-displacement relations of large deformation and the Ritz energy method are used. The material properties of the shells vary smoothly through the shell thickness according to a power law distribution of the volume fraction of the constituent materials. Meanwhile, by taking the temperature-dependent material properties into account, various effects of external thermal environment are also investigated. The non-linear critical condition is found by defining the possible lowest point of external force. Numerical results show various effects of the inhomogeneous parameter, dimensional parameters and external thermal environments on non-linear buckling behaviors of combine-loaded FG cylindrical shells. In addition, the postbuckling equilibrium paths are also plotted for axially loaded pre-pressured FG cylindrical shells and there is an interesting mode jump exhibited.  相似文献   

2.
The effect of local geometric imperfections on the buckling and postbuckling of composite laminated cylindrical shells subjected to combined axial compression and uniform temperature loading was investigated. The two cases of compressive postbuckling of initially heated shells and of thermal postbuckling of initially compressed shells are considered. The formulations are based on a boundary layer theory of shell buckling, which includes the effects of the nonlinear prebuckling deformation, the nonlinear large deflection in the postbuckling range and the initial geometric imperfection of the shell. The analysis uses a singular perturbation technique to determine buckling loads and postbuckling equilibrium paths. Numerical examples are presented that relate to the performances of cross-ply laminated cylindrical shells with or without initial local imperfections, from which results for isotropic cylindrical shells follow as a limiting case. Typical results are presented in dimensionless graphical form for different parameters and loading conditions.  相似文献   

3.
钢衬壳热屈曲问题是核工程安全壳设计中的主要问题把铆固之间的钢衬壳视为钢衬板的特殊缺陷形式,利用Koiter初始后屈曲理论分析了完善和具有初始缺陷钢衬壳的弹性热后屈曲性态给出了用挠度-温度载荷表示的钢衬壳的后屈曲平衡路径表达式和屈曲临界载荷表达式具体分析了三种钢衬壳模型:四点铆固钢衬壳、四边固支钢衬壳和五点铆固钢衬壳给出了钢衬的初始缺陷、锚钉间距、钢衬厚度等参数对钢衬热屈曲载荷的影响结果对安全壳中钢衬壳的设计有很好的参考价值  相似文献   

4.
IntroductionInrecentyears,fiber_reinforcedcompositelaminatedshellstructuresarewidelyusedintheaerospace ,marineindustry ,automobileindustryandotherengineeringapplications.Duringtheoperationallife ,thevarianceoftemperatureandmoisturereducestheelasticmoduli…  相似文献   

5.
提出了一种分析交各向异性圆柱壳和阶梯圆柱壳稳定性问题的混合变量条形传递函数方法。首先基于Fluegge薄壳理论,通过定义广义位移变量和对应的广义力变量,建立了圆柱壳混合变量能量泛函;然后通过引入条形单元,定义混合状态变量和采用传递函数方法对超级壳单元求解,得到具有多种边界条件圆柱壳屈曲问题的半解析解;最后通过位移连续和力平衡条件,可以得到阶梯圆柱壳屈曲问题的解。理论解推导过程表明此方法在引入边界条件和进行阶梯圆柱壳求解时非常方便。算例分析的结果验证了本方法的正确性。  相似文献   

6.
郑波  王安稳 《力学季刊》2006,27(4):675-680
本文运用有限元特征值分析方法对应力波作用下圆柱壳弹性轴对称动力失稳问题进行了研究。基于应力波理论和相邻平衡准则导出了圆柱壳轴对称动力失稳时的有限元特征方程,在此方程中考虑了应力波效应及横向惯性效应,把圆柱壳弹性动力失稳问题归结为特征值问题。通过引入圆柱壳动力失稳时的波前约束条件实现了此类问题的有限元特征值解法。计算结果揭示了圆柱壳弹性轴对称动力屈曲变形发展的机理,以及轴向应力波和屈曲变形的相互作用规律。  相似文献   

7.
A postbuckling analysis is presented for a functionally graded cylindrical shell subjected to torsion in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction. The material properties of functionally graded materials (FGMs) are assumed to be graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents, and are assumed to be temperature-dependent. The governing equations are based on a higher order shear deformation theory with a von Kármán–Donnell-type of kinematic non-linearity. The non-linear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling load and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of twist, perfect and imperfect, FGM cylindrical shells under different sets of thermal fields. The results reveal that the volume fraction distribution of FGMs has a significant effect on the buckling load and postbuckling behavior of FGM cylindrical shells subjected to torsion. They also confirm that the torsional postbuckling equilibrium path is weakly unstable and the shell structure is virtually imperfection–insensitive.  相似文献   

8.
The paper proposes a new approach of predicting the bifurcation points of elastic-plastic buckling of plates and shells, which is obtained from the natural combination of the Lyaponov's dynamic criterion on stability and the modified adaptive Dynamic Relaxation (maDR) method developed recently by the authors. This new method can overcome the difficulties in the applications of the dynamic criterion. Numerical results show that the theoretically predicted bifurcation points are in very good agreement with the corresponding experimental ones. The paper also provides a new means for further research on the plastic buckling paradox of plates and shells.  相似文献   

9.
Summary The influence of shear deformation on the buckling behavior of a beam supported laterally by a Winkler elastic foundation is studied. A full investigation of the bifurcation points at which, under axial load, the beam becomes critical with respect to one or two simultaneous buckling modes is made. The configurations and stabilities of the equilibrium paths that bifurcate from the critical points are derived. From the results of theoretical analysis, it becomes evident that shear deformation has a considerable effect upon the equilibriums and stabilities of the post-buckling of the beam. The results for the Bernoulli-Euler beam can be obtained as a limiting case for those of the present beam by letting the shear stiffness tend to infinity.Supported by the National Natural Science Foundation of China  相似文献   

10.
An improved Monte-Carlo method for the failure calculation of structureis proposed.The present method can determine whether some sample points are in thesafe region without doing structural analysis,so the calculation work is greatly reducedcompared with the ordinary M-C method.Finally,the new M-C method is applied toreliability analysis of frame and the torsional buckling reliability analysis of cylindricalshells.  相似文献   

11.
通过对拱顶储罐罐壁承受轴向载荷、初始几何缺陷及轴压失稳状况研究,指 出在固定顶罐设计、建造和运行各阶段都应进行罐壁轴压稳定性校核. 根据圆柱薄壳稳定性 理论和轴压失稳临界应力数值分析计算结果,提出固定顶罐罐壁轴压稳定性校核方法和数学 模型,并运用回归分析方法建立罐壁轴压失稳临界应力计算公式. 对几种常用规格的拱顶罐 有初始挠度缺陷罐壁轴压稳定性分析表明:随储罐容积和罐壁初始挠度增大,罐壁轴压稳定 性呈减弱趋势.  相似文献   

12.
The postbuckling response of shells is known to exhibit complex phenomena including mode switching and interaction, particularly in the advanced postbuckling range. The existing literature contains many initial postbuckling analyses as well as advanced postbuckling analyses for a single buckling mode, but little work is available on the advanced postbuckling analysis of shells of revolution considering mode switching and interaction. In this paper, a numerical method for the advanced postbuckling analysis of thin shells of revolution subject to torsionless axisymmetric loads is presented, in which such mode switching and interaction are properly captured. Numerical results obtained using the present method for several typical problems not only demonstrate the capability of the method, but also lead to significant observations concerning the postbuckling behavior of thin shells of revolution. In particular, the results show that strong interaction between different harmonic modes may exist and the transition of deformation mode from one to another is gradual. Consequently, the conventional approach of finding the postbuckling path of a shell as the lower festoon curve of postbuckling paths of individual harmonic modes is not valid and is at best a convenient approximation.  相似文献   

13.
IntroductionImportantaplicationsofthestabilityanalysisofshelscanbefoundinthemodernengineringrangingovertheaerospace,marine,ar...  相似文献   

14.
1.IntroductionStiffenedcylindricalshellsarewidelyusedinmanytypesofstructures.Inpracticetheyoftensubjecttovarioustypesofcombinedthermalandmechanicalloadingandmayhavesignificantandunavoidableinitialgeometricalimperfections.Therefore,thepostbucklingbehaviorofimperfectstiITenedcylindricalshellsundercombinedexternalpress.ureandthermalloadingmustbewellunderstood.Manypostbucklingstudieshavebeenmadetbrstiffenedcylindricalshellsunderpureaxialcompression,uniformexternalpressureortheircombinations,where…  相似文献   

15.
A postbuckling analysis is presented for a shear deformable functionally graded cylindrical shell of finite length subjected to combined axial and radial loads in thermal environments. Heat conduction and temperature-dependent material properties are both taken into account. The temperature field considered is assumed to be a uniform distribution over the shell surface and varied in the thickness direction only. Material properties are assumed to be temperature-dependent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of the constituents. The formulations are based on a higher order shear deformation shell theory with von Kármán–Donnell-type of kinematic nonlinearity. A boundary layer theory of shell buckling, which includes the effects of nonlinear prebuckling deformations, large deflections in the postbuckling range, and initial geometric imperfections of the shell, is extended to the case of functionally graded cylindrical shells. A singular perturbation technique is employed to determine the interactive buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect cylindrical shells with two constituent materials subjected to combined axial and radial mechanical loads and under different sets of thermal environments. The results reveal that the temperature field and volume fraction distribution have a significant effect on the postbuckling behavior, but they have a small effect on the imperfection sensitivity of the functionally graded shell.  相似文献   

16.
A general method for The evaluation of the effect of shape imperfections on the buckling strength of thin shells and thin-shell-like structures is presented. At first the prebuckiing equilibrium state of the structure is determined by means of power series expansions in the magnitude of the shape imperfection. Then the buckling load is determined by means of the classical theory of stability. The method requires the solution of only linear equations with linear boundary conditions. It is equally well applicable to any pattern of shape imperfections and can give an estimate of the accuracy of the evaluation.  相似文献   

17.
Buckling and imperfection sensitivity are the primary considerations in analysis and design of thin shell structures. The objective here is to develop accurate and efficient capabilities to predict the postbuckling behavior of shells, including imperfection sensitivity. The approach used is based on the Lyapunov–Schmidt–Koiter (LSK) decomposition and asymptotic expansion in conjunction with the finite element method. This LSK formulation for shells is derived and implemented in a finite element code. The method is applied to cylindrical and spherical shells. Cases of linear and nonlinear prebuckling behavior, coincident as well as non-coincident buckling modes, and modal interactions are studied. The results from the asymptotic analysis are compared to exact solutions obtained by numerically tracking the bifurcated equilibrium branches. The accuracy of the LSK asymptotic technique, its range of validity, and its limitations are illustrated.  相似文献   

18.
环壳屈曲的渐近解   总被引:2,自引:0,他引:2  
本文提出分析圆环壳屈曲的一种渐近解析方法,由Sanders非线性平衡方程和壳中面变形协调方程推导出静水外压下环壳的稳定方程,求出了方程的渐近解,理论计算的临界压力值与Fishlowitz的实验结果符合良好,并研究了屈曲前非线性变形对临界载荷的影响。  相似文献   

19.
A solution is obtained that describes the postbuckling behavior of cylindrical shells in the case of axisymmetric buckling. The basis for this solution is Koiter’s asymptotic method and the nonlinear equations of the third-order Timoshenko theory of shells. It is shown that the bifurcation point in this case is a symmetrically unstable one. The effect of the initial axisymmetric deflections on the buckling loads is weaker when buckling is axisymmetric. The results obtained by Koiter’s special theory evidence this __________ Translated from Prikladnaya Mekhanika, Vol. 42, No. 4, pp. 108–118, April 2006.  相似文献   

20.
This paper presents a thorough and comprehensive investigation of non-linear buckling and postbuckling analyses of pin-ended shallow circular arches subjected to a uniform radial load and which have equal elastic rotational end-restraints. The differential equations of equilibrium for non-linear buckling and postbuckling are established based on a virtual work approach. Exact solutions for the non-linear bifurcation, limit point and lowest buckling loads are obtained; in particular, exact solutions for the non-linear postbuckling equilibrium paths are derived. The criteria for switching between fundamental buckling and postbuckling modes are developed in terms of critical values of a geometric parameter for an arch, with exact solutions for these critical values of geometric parameter being obtained. Analytical solutions of non-linear buckling and postbuckling problems for arches with rotational end-restraints are of great interest, since they constitute one of the very few closed-form analyses of buckling and postbuckling behaviour of continuous structural systems. These exact solutions are a contribution to the non-linear structural mechanics of arches, as well as providing useful benchmark solutions for verifying non-linear numerical analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号