首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 390 毫秒
1.
一类多孔固体的等效偶应力动力学梁模型   总被引:1,自引:0,他引:1  
苏文政  刘书田 《力学学报》2016,48(1):111-126
一维多孔固体结构可采用等效连续介质梁模型来研究其动力学行为.当类梁结构的高度尺寸和多孔固体单胞结构尺寸相近时,等效模型的力学行为会产生尺寸效应现象.等效经典模型由于不包含尺度参数而无法描述尺寸相关特点,而广义连续介质力学模型则可以准确地考虑尺寸效应的影响.基于偶应力理论,对一类单胞含有圆形孔洞的周期性多孔固体类梁结构,给出了分析其横向自由振动的等效连续介质铁木辛柯梁模型.通过对单胞分析,在应变能等价和几何平均的意义下,定义了等效偶应力介质的材料常数.利用已有的材料常数,推导了等效铁木辛柯梁的动力学微分方程.将实际多孔固体结构进行完全的动力学有限元离散计算,所获得的解作为精确解以检验等效梁模型所获得的频率和振型的精度.振型的比较借助于模态置信准则矩阵方法.大量算例表明,等效偶应力铁木辛柯梁模型在频率和振型两方面均具有较高的计算精度.重点研究了单胞孔径的相对大小、类梁结构高度与单胞尺寸比以及类梁结构长高比对等效梁模型精度的影响.在此基础上,偏保守地建议了多孔固体类梁结构自振分析方法.  相似文献   

2.
A novel method for damage detection of multi-cracked beam-like structures by analyzing the static deflection is presented. The damage incurred produces a change in the stiffness of the beam. This causes a localized singularity which can be identified by a wavelet analysis of the displacement response. The existence and location of the cracks can be revealed by positions of the peaks in the continuous wavelet transform (CWT). To achieve this, the static profile of beams is analyzed with Gauss2 wavelet to identify the cracks. Beams under some ideal boundary and prescribed load conditions are considered. The deflected shape of the beam with open and fatigue cracks has been simulated under static loading using lumped crack models adopted from fracture mechanics and involving various degrees of complexity. The deflection of cracked beam in closed form for several cases of loads, crack sizes, and crack locations is calculated, and an explicit expression for the damage index (DI), based on CWT, is developed; it is demonstrated that the proposed damage index does not depend on mechanical properties of a homogeneous beam, and that the DI of one crack does not depend on the size and location of other cracks in a multiple cracked beam. Hence, the obtained expression for the DI can be used to find the size of each crack independently. Numerical results show that the method can detect cracks of small depth and is also applicable under the presence of measurement noise.  相似文献   

3.
In this paper an on-going research effort aimed at detecting and localizing damage in plate-like structures by using mode shape curvature based damage detection algorithm is described. The proposed damage index uses exclusively mode shape curvature data from the damaged structure. This method was originally developed for beam-like structures. In this paper, the method is generalized to plate-like structures which are characterized by two-dimensional mode shape curvature. To calculate mode shape curvatures from the measured mode shapes, three approaches are proposed: the first one is the well-known central difference approximation, the other two are classical approaches based on Tikhonov's regularization technique with smoothing functional. The applicability and effectiveness of the proposed damage detection algorithms are demonstrated experimentally on an aluminium plate containing mill-cut damage. The validity of the method is assessed by comparing the identification results of the experimental test case to the results obtained from the simulated test case. The modal frequencies and the corresponding mode shapes of the aluminium plate are obtained via finite element models for numerical simulations and by using a scanning laser vibrometer (SLV) for the experimental study.  相似文献   

4.
A new method based on a modified line-spring model is developed forevaluating the natural frequencies of vibration of a cracked beam.This model inconjunction with the Euler-Bernoulli beam theory,modal analysis and linear elasticfracture mechanics is applied to obtain an approximate characteristic equation of acracked hinged-hinged beam.By solving this equation the natural frequencies aredetermined for different crack lengths in different positions.The results show goodagreement with the solutions through finite element analysis.The present method maybe extended to analyze other cracked complicated structures with various boundaryconditions.  相似文献   

5.
Mode shape-based structural damage identification has been a research focus during the last couple of decades. Most of the existing methods need a numerical or measured baseline mode shape serving as a reference to identify damage, and this requirement extremely limits the practicability of the methods. Recently, waveform fractal dimension such as Katz’s waveform fractal dimension (KWD) has been explored and applied to mode shape for crack identification without a baseline requirement. In this study, different from the popular KWD, an approximate waveform capacity dimension (AWCD) is formulated first, from which an AWCD-based modal abnormality algorithm (AWCD-MAA) is systematically established. Then, the basic characteristics of AWCD-MAA on abnormality detection of mode shapes, e.g., crack localization, crack quantification, noise immunity, etc., are investigated based on an analytical crack model of cantilever beams using linear elastic fracture mechanics. In particular, from the perspective of isomorphism, a mathematical solution on the use of applying waveform fractal dimension to higher mode shapes for crack identification is originally proposed, from which the inherent deficiency of waveform fractal dimension to identify crack when implemented to higher mode shapes is overcome. The applicability and effectiveness of the AWCD-MAA is validated by an experimental program on damage identification of a cracked composite cantilever beam using smart piezoelectric sensors/actuators (i.e., Piezoelectric lead–zirconate–titanate (PZT) and polyvinylidene fluoride (PVDF)). The proposed AWCD-MAA provides a novel, viable method for crack identification of beam-type structures without baseline requirement, and it largely expands the scope of fractal in structural health monitoring applications.  相似文献   

6.
This paper addresses the problem of linear crack quantification, crack depth estimation and localization, in structures. An optimization technique based on a finite element model for cracked structural elements is employed in the estimation of crack parameters for beam, truss and two-dimensional frame structures. The modal data for the cracked structures are obtained by solving the corresponding eigenvalue problem. The error in the modal data is simulated by an additive noise that follows the normal distribution. The simulated reduced modal data is expanded using the eigenvector projection method. Numerical examples showed that this technique gives good results for cracks with high depth ratio. The accuracy of the estimated crack parameters depends on (1) the number of modes used, (2) the error level in the cracked structure modal data and (3) the number of measured degrees of freedom in the case of reduced modal data.  相似文献   

7.
An alternative technique for crack detection in a Timoshenko beam based on the first anti-resonant frequency is presented in this paper.Unlike the natural frequency,the anti-resonant frequency is a local parameter rather than a global parameter of structures,thus the proposed technique can be used to locate the structural defects.An impedance analysis of a cracked beam stimulated by a harmonic force based on the Timoshenko beam formulation is investigated.In order to characterize the local discontinuity due to cracks,a rotational spring model based on fracture mechanics is proposed to model the crack.Subsequently,the proposed method is verified by a numerical example of a simply-supported beam with a crack.The effect of the crack size on the anti-resonant frequency is investigated.The position of the crack of the simply-supported beam is also determined by the anti-resonance technique.The proposed technique is further applied to the"contaminated"anti-resonant frequency to detect crack damage,which is obtained by adding 1-3% noise to the calculated data.It is found that the proposed technique is effective and free from the environment noise.Finally,an experimental study is performed,which further verifies the validity of the proposed crack identification technique.  相似文献   

8.
In this paper, a technique is presented for the detection and localization of an open crack in beam-like structures using experimentally measured natural frequencies and the Particle Swarm Optimization (PSO) method. The technique considers the variation in local flexibility near the crack. The natural frequencies of a cracked beam are determined experimentally and numerically using the Finite Element Method (FEM). The optimization algorithm is programmed in MATLAB. The algorithm is used to estimate the location and severity of a crack by minimizing the differences between measured and calculated frequencies. The method is verified using experimentally measured data on a cantilever steel beam. The Fourier transform is adopted to improve the frequency resolution. The results demonstrate the good accuracy of the proposed technique.  相似文献   

9.
为了采用模态参数对结构裂纹进行定位与定量,基于集中柔度模型,采用无质量的扭转弹簧模拟裂纹,建立简支裂纹梁的振动微分方程。针对现有柔度曲率指标仅能判断裂纹的大致范围,基于线性插值理论,建立裂纹位置与相邻测点均匀荷载面曲率差的关系,提出裂纹进一步定位公式,实现裂纹位置的精确定位。针对现有大多数损伤识别方法无法实现裂纹的损伤定量,基于位移曲率与结构刚度和弯矩的关系,理论推导了均匀荷载面曲率的结构刚度损伤程度识别方法,基于弹簧串联原理和线刚度思想,首次提出串联等效线刚度模型,建立裂纹深度与均匀荷载面曲率的关系,实现裂纹深度的定量。通过简支裂纹梁数值算例,考虑多裂纹的损伤情况,验证了新方法对裂纹定位与定量的有效性。  相似文献   

10.
The problem of using measured modal parameters to detect and locate damage in structures made of fiberreinforced composites is investigated. Recent work in this area using modal sensitivity equations is used in conjunction with internal-state variable constitutive theory to derive a set of damage-detection equations which are used to predict, from changes in measured modal parameters, the current value of the internal-state variables in each finite element. The value of the internal-state variable determines the extent of damage at a given location. Numerical examples involving damaged composite beams are used to demonstrate the capability of the theory to predict the exact location and the severity of damage. To provide experimental evidence to support the theory, mechanical and modal tests are performed on a [0,903] s laminated composite beam in the undamaged state and in three additional states of progressive damage. At each stage of damage, edge replications are taken to determine the crack density along the length of the beam. The predicted values of the internal-state variables, obtained from the modalsensitivity equations using measured modal information, are compared with the values of the internal-state variables obtained from crack-density measurements along the length of the beam. Good agreement between the predicted and the measured values is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号