首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
基于Legendre多项式函数系的齐次扩容精细算法   总被引:4,自引:1,他引:3  
基于Legendre多项式函数系的特点,设计了求解非齐次线性定常系统的一种新的精细算法——基于Legendre正交多项式系的齐次扩容精细算法(HHPD—L)。这一算法不仅避免了HPD—F算法中的矩阵求逆,还克服了HHPD—F算法中非齐次函数周期性要求的限制;不仅计算量小、设计合理,还易于推广和实现。两个典型算例表明,HHPD—L算法的数值结果更为理想。  相似文献   

2.
结构动力方程的增维精细积分法   总被引:29,自引:2,他引:27  
对线性定常结构动力系统提出的精细积分方法,能够得到在数值上逼近于精确解的结果,但对于非齐次动力方程涉及到矩阵求逆的困难。提出采用增维的办法,将非齐次动力方程转化为齐次动力方程,在实施精细积分过程中不必进行矩阵求逆,这种方法对于程序实现和提高数值稳定性十分有利,而且在大型问题中计算效率较高,从而改进了精细积分方法的应用,数值例题显示了本文方法的有效性。  相似文献   

3.
非齐次动力方程Duhamel项的精细积分   总被引:14,自引:1,他引:13  
谭述君  钟万勰 《力学学报》2007,39(3):374-381
提出了不需要矩阵求逆运算的求解Duhamel积分项的精细积分方法.通过将精细积分法的关键思想--加法定理和增量存储--直接应用于Duhamel积分响应矩阵的求解,可给出当非齐次项分别为多项式、正弦/余弦以及指数函数等基本形式时Duhamel积分在计算机上的精确解.特别的,该算法不依赖于系统矩阵(或相关矩阵)的形态.当系统矩阵奇异或接近奇异时,其优越性更为显著.算例验证了该算法的有效性.  相似文献   

4.
常规位移有限元的结构振动方程是n个二阶常微分方程组.采用一般交分原理推导,将结构振动问题引入Hamiltoil体系,将得到2n个一阶常微分方程组.精细积分法宜于处理一阶方程,应用于线性定常结构动力问题求解,可以得到在数值上逼近精确解的结果.对于非齐次动力方程,当结构具有刚体位移时,系统矩阵将出现奇异.本文借鉴全元选大元高斯-约当法求解线性方程组的经验,提出全元选大元法求奇异矩阵零本征解的方法,该方法可以简便快速地寻求奇异矩阵零本征值对应的子空间.利用Hamiltoil体系已有研究成果及Hamilton系统的共轭辛正交归一关系,迅速将零本征值对应的子空间分离出来,通过投影排除奇异部分,然后用精细积分法求得问题的解.数值算例表明,该方法对Hamilton系统奇异问题,处理方便,计算量小,易于实现,同时保持了精细算法的优点.  相似文献   

5.
非线性动力方程的增维精细积分法   总被引:30,自引:0,他引:30  
对线性定常结构的动力系统提出的精细积分法,能得到在数值上逼近于精确解的结果。但是对于非齐次动力方程却涉及到矩阵求逆的困难,而且通常与时间有关的非齐次项不能进入精细积分的细化过程。采用增维的方法,将非齐次动力方程化为齐次方程,在实施精细积分的过程中不必进行矩阵求逆。这种处理方法对于程序实现和提高数值计算的稳定性十分有利,而且在大型问题中可明显提高计算效率,数值算例显示本文方法是有效的。  相似文献   

6.
基于Duhamel项的精细积分方法,构造了几种求解非线性微分方程的数值算法。首先将非线性微分方程在形式上划分为线性部分和非线性部分,对非线性部分进行多项式近似,利用Duhamel积分矩阵,导出了非线性方程求解的一般格式。然后结合传统的数值积分技术,例如Adams线性多步法等,构造了基于精细积分方法的相应算法。本文算法利用了精细积分方法对线性部分求解高度精确的优点,大大提高了传统算法的数值精度和稳定性,尤其是对于刚性问题。本文构造的算法不需要对线性系统矩阵求逆,可以方便的考察不同的线性系统矩阵对算法性能的影响。数值算例验证了本文算法的有效性,并表明非线性系统的线性化矩阵作为线性部分是比较合理的选择。  相似文献   

7.
对线性定常结构动力系统提出的增维精细积分法,能够将非齐次动力方程转化为齐次动力方程,不用对状态矩阵求逆就能方便高效地求解出结构的动力响应。本文在仔细分析增维精细积分法性质的基础上,提出了其适用条件,进一步拓宽了其应用范围,并给出了将荷载项展开成傅里叶级数时,相应增维精细积分法的表达式。同时,在一个时间步长内,通过对非齐次项作线性化假设,成功地将增维精细积分法应用到了非线性动力分析领域。本文方法计算格式统一,易于编程,具有很高的计算效率。数值算例证明了本文方法的有效性。  相似文献   

8.
针对非齐次动力学方程■,结合精细积分法和微分求积法,利用同阶的显式龙格-库塔法对计算过程中待求的v_(k+i/s)(i=1,2,…,s)进行预估,提出了一种避免状态矩阵求逆的高效精细积分单步方法。该方法采用精细积分法计算e~(Ht),而Duhamel积分项采用s级s阶的时域微分求积法,计算格式统一且易于编程,可灵活实现变阶变步长。仿真结果表明,与其他单步法及预估校正-辛时间子域法进行数值比较,该方法具有高精度、高效率及良好的稳定性,在求解大规模动力系统时间响应问题中具有较大的优势。  相似文献   

9.
基于Hamilton体系下的精细时程积分方法,通过对载荷项进行离散,应用中值法使载荷项在时间步长内为常值,从而将非齐次动力方程转化为齐次动力方程,避免了矩阵的求逆运算;基于积分区间逐次半分的思想实现了任意时间步长的自适应求积。数值算例结果表明:在同等时间步长的非齐次系统中,精细时程积分的最大误差为中心差分法的2.8%,为Newmark法的2.2%,最大求解误差仅为0.029%。这充分说明了本文的离散精细时程积分的自适应求积算法具有很好的收敛性。  相似文献   

10.
提出一种针对非线性动力方程的改进精细积分方法。该方法是在时间步长内采用分段的三次样条函数拟合非齐次项,保持高精度拟合的同时避免了求导运算和高次多项式插值带来的Runge现象。通过引入4×2个变量将动力方程增加四维转化为齐次方程,并建立相应的通解格式,避免了状态空间下系统矩阵求逆。将指数矩阵分为四个子模块,利用各模块的特点分别进行理论推导及基于精细积分法进行分步、分块计算得到相应的理论解和高精度数值解,无需反复计算整个指数矩阵,提高了解算效率。针对含未知状态量的非齐次项,引入预测-校正的方法进行迭代求解。数值计算结果表明了本文方法的有效性。  相似文献   

11.
李鸿晶  梅雨辰  任永亮 《力学学报》2019,51(5):1507-1516
传统采用微分求积(differential quadrature,DQ)法求解动力问题时都是以位移响应作为基本未知量,而将速度响应和加速度响应表示为位移响应的加权和的形式.如此做法需要处理线性方程组或者矩阵方程(Sylvester方程)才能求得动力响应,导出的算法一般为有条件稳定算法.本文利用动力响应的Duhamel积分解,逆用DQ原理,提出了一种计算卷积的高精度显式算法.该算法可以逐时段地求解出动力时程响应,当各时段内DQ节点分布完全一致时,仅须进行一次Vandermonde矩阵求逆计算即可应用于各个时段,一次性获得时段内多个时刻的位移响应值,因而具有计算效率高的优点.通过分析动力方程积分格式,证明本文动力算法传递矩阵的谱半径恒等于1,因而该算法具有无条件稳定特性,且计算过程中不会产生数值耗散. 本文算法的数值精度取决于分析时段内布置的DQ节点数量$N$,具有$N-1$阶代数精度.实际操作时可以取10个甚至更多的DQ节点数,从而获得比较高的数值精度.   相似文献   

12.
Abstract

Numerical algorithms for the solution of nonlinear algebraic equation systems are discussed. Special application to the mechanism and multibody system kinematic analysis, as well as to the problems of constraint stabilization during dynamics simulation is regarded. Special attention is paid to the approaches of a separate solution of the differential equations and constraint stabilization. Numerical procedures that are effective additions to the well-known algorithms based on the Newton-Raphson method are presented. The problems of loss of precision and achievement of large unreal increments of the varying parameters are discussed. The traditional Newton-Raphson method is modified by applying a step reduction procedure that is developed numerically for the symbolic form of kinematic and dynamic equations. An optimization method for stabilization of constraints using the mass matrix of dynamic equations is suggested. According to the objective function defined the stabilization procedure provides minimal deviations of the parameters and their velocities with respect to the solution of the differential equations. No generalized coordinate partitioning is required either for solution of the dynamic equations or for stabilization of the constraints. Several examples of kinematic analysis of single and four contour plane mechanisms and constraint stabilization are solved, and the results are compared. The advantages of the algorithms developed are tested with a high-degree of initial deviation from the real solution. It is also shown that the step correction algorithm could provide admissible solution even when, in many cases, the classical approaches are not reliable. An example of the direct and inverse kinematic problem solutions of the four-degrees-of-freedom spatial platform is presented.  相似文献   

13.
薄板理论的正交关系及其变分原理   总被引:6,自引:2,他引:4  
利用平面弹性与板弯曲的相似性理论,将弹性力学新正交关系中构造对偶向量的思路推广到 各向同性薄板弹性弯曲问题,由混合变量求解法直接得到对偶微分方程并推导了对应的变分 原理. 所导出的对偶微分矩阵具有主对角子矩阵为零矩阵的特点. 发现了两个独立的、对称 的正交关系,利用薄板弹性弯曲理论的积分形式证明了这种正交关系的成立. 在恰当选择对 偶向量后,弹性力学的新正交关系可以推广到各向同性薄板弹性弯曲理论.  相似文献   

14.
提出一种计算周期结构动力响应的高效率算法. 以精细积分方法为基础, 利用周期结构的对称性和动力问题的物理特性, 分析了周期结构对应矩阵指数的特殊结构, 并基于此给出一种计算周期结构对应矩阵指数的高效率方法. 在高效和精确计算周期结构对应矩阵指数的基础上, 得到了周期结构动力响应的高效率和高精度算法. 数值算例表明, 该方法效率高且节省存储要求.  相似文献   

15.
结构动力方程的更新精细积分方法   总被引:29,自引:3,他引:26  
汪梦甫  周锡元 《力学学报》2004,36(2):191-195
将高斯积分方法与精细积分方法中的指数矩阵运算技巧结合起来,建立了精细积分法的更新形式及计算过程,对该更新精细积分方法的稳定性进行了论证与探讨。在实施精细积分过程中不必进行矩阵求逆,整个积分方法的精度取决于所选高斯积分点的数量。这种方法理论上可实现任意高精度,计算效率较高,其稳定性条件极易满足。数值例题也显示了这种方法的有效性。  相似文献   

16.
This paper presents a high order symplectic conservative perturbation method for linear time-varying Hamiltonian system.Firstly,the dynamic equation of Hamiltonian system is gradually changed into a high order perturbation equation,which is solved approximately by resolving the Hamiltonian coefficient matrix into a "major component" and a "high order small quantity" and using perturbation transformation technique,then the solution to the original equation of Hamiltonian system is determined through a series of inverse transform.Because the transfer matrix determined by the method in this paper is the product of a series of exponential matrixes,the transfer matrix is a symplectic matrix;furthermore,the exponential matrices can be calculated accurately by the precise time integration method,so the method presented in this paper has fine accuracy,efficiency and stability.The examples show that the proposed method can also give good results even though a large time step is selected,and with the increase of the perturbation order,the perturbation solutions tend to exact solutions rapidly.  相似文献   

17.
关于动力分析精细积分算法精度的讨论   总被引:9,自引:3,他引:6  
张洪武 《力学学报》2001,33(6):847-852
对动力问题分析的精细积分算法的精度问题进行深入研究,并在此基础上提出对原有的算法的改进策略,改进后的算法可以较好地克服算法精度对积分时间步长的依赖性问题。  相似文献   

18.
空间展开折叠桁架结构动力学分析研究   总被引:2,自引:0,他引:2  
本文以笛卡尔坐标系下节点自然坐标为未知量,建立了桁架结构系的基本运动力学方程,并首次推导出桁架结构中常用节点附加几何约束方程,相应约束Jacobi矩阵及其导数矩阵,采用奇异值分解法求约束Jacobi矩阵的零空间基和M-P广义逆,并由矩阵缩减法建立了带约束桁架体系的运动力学方程和求解方法。数值算例表明该方法适于可展折叠桁架结构运动力学分析。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号