首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
2.
工程中存在一类几何边界随时间变化的变边界结构,例如土木工程中处于施工阶段的结构。本文以粘弹性岩体中隧道开挖为背景,尝试用变边界问题对应关系和平面弹性复变方法求取无限平面中椭圆孔口自相似变边界情况下的解析解答。首先建立了复变函数法求解变边界粘弹性问题的基本步骤和公式。然后通过建立逆映射函数将已知?平面复位势转至z平面,从而解耦参与拉普拉斯变换的时间与孔口映射函数所带来的时间,从而导出了粘弹性类材料的应力与位移的统一表达。作为一个例子,本文选择Boltzmann粘弹性模型,代入模型参数后得到积分形式的位移、应力解析解,通过与数值解的比较验证了该解答的可靠性,并通过一个算例分析了变边界过程对位移、应力的影响。分析结果显示,采用不同变边界过程的位移、应力变化形态和数值均有差别。本文解答可用于进行地下椭圆孔型隧道在开挖过程中的力学分析,为实际工程提供初步设计的手段。此外,本文给出的方法可用于推导任意形状孔型变边界问题的解答。  相似文献   

3.
This paper presents the fundamental contact solutions of a magneto-electro-elastic half-space indented by a smooth and rigid half-infinite punch. The material is assumed to be transversely isotropic with the symmetric axis perpendicular to the surface of the half-space. Based on the general solutions, the generalized method of potential theory is adopted to solve the boundary value problems. The involved potentials are properly assumed and the corresponding boundary integral equations are solved by using the results in literature. Complete and exact fundamental solutions are derived case by case, in terms of elementary functions for the first time. The obtained solutions are of significance to boundary element analysis, and an important role in determining the physical properties of materials by indentation technique can be expected to play.  相似文献   

4.
A Legendre wavelet spectral collocation method is proposed here to solve three boundary layer flow problems of Walter-B fluid namely the stagnation point flow, Blasius flow and Sakiadis flow. In the proposed method, we first transform the boundary value problems into initial value problems using shooting method. We then split the semi infinite domain into subintervals and the governing initial value problems are transformed to system of algebraic equations in each subinterval. The solutions of these algebraic equations yield an approximate solution of the differential equation in each subinterval. The overshoot in the velocity profile associated with the stagnation point and Blasius flows and undershoot in the Sakiadis flow is controlled. Physically realistic solutions are presented for both weakly and strongly viscoelastic parameters. The residual error validates the correctness, convergence and accuracy of the obtained solutions.  相似文献   

5.
In this paper, the concept of covering domain is introduced to develop a general expression for the Fredholm Integral Equations Method, by which elasticity problems of arbitrarily shaped bodies loaded by external forces can be solved. Some special expressions are given for a body with non-zero remote stresses, or subjected to some concentrated forces on its boundary. The relationship between the loading forces and solutions are also discussed. Some analytical solutions can be obtained for simple cases. When numerical computations are needed for the solution, the method proves to have high precision and fast convergency.  相似文献   

6.
Under consideration is the problem of size and response of the representative volume element (RVE) of spatially random linear viscoelastic materials. The model microstructure adopted here is the random checkerboard with one phase elastic and another viscoelastic, perfectly bonded everywhere. The method relies on the hierarchies of mesoscale bounds of relaxation moduli and creep compliances (Huet, 1995, 1999) obtained via solutions of two stochastic initial boundary value problems, respectively, under uniform kinematic and uniform stress boundary conditions. In general, the microscale viscoelasticity introduces larger discrepancy in the hierarchy of mesoscale bounds compared to elasticity, and this discrepancy grows as the time increases.  相似文献   

7.
1.IntroductionItiswell-knownthatthefundame,ltalsolutionsorGreen'sfunctionsplayanimportantroleilllinearelasticity.Forexample,theycanbeusedtoconstructmanyanalyticalsolutionsofpracticalproblems.Itismoreimportantthattheyareusedasthefundamentalsolutionsintheboundaryelementmethod(BEM)tosolvesomecomplicatedproblem.Withthewidely-increasingapplicationofpiezoelectricmaterialsinengineeringproblems,thestudyregardingtheGreen'sfLlnctionsinpiezoelectricsolidshasreceivedmuchinterest.The3DGreen'sfunctionsi…  相似文献   

8.
In this paper,some thermoelastic problems in the half space are studied by using thegeneral solutions of the elastic equations.The method presented here is extremely effectivefor the axisymmetric problems of the half space as well as the half plane problems.  相似文献   

9.
In this paper, some thermoelastic problems in the half space are studied by using the general solutions of the elastic equations. The method presented here is extremely effective for the axisymmetric problems of the half space as well as the half plane problems.  相似文献   

10.
弹性地基上四边自由的各向异性矩形板   总被引:4,自引:2,他引:4  
通过叠加法得到了弹性地基上的各向异性矩形板的一般解。每个叠加解被展成重傅立叶级数,其自身或其一阶导数在边界上的值被展成单傅立叶级数。利用控制微分方程和一些边界条件,每个叠加解被简化成用边界值的级数的系数表示的傅立叶级数。文后给出了弹性地基上的方板的挠曲面图。  相似文献   

11.
本文采用胡海昌教授提出的厚板方程,并用作者所提出的滑支边和广义滑支边的概念,再加上广义简支边的概念,用叠加法求解两邻边自由另两边任意支撑的矩形厚板静力问题一般解。  相似文献   

12.
In this work, the generalized thermoelastic solutions with bounded boundaries for the transient shock problem are proposed by an asymptotic method. The governing equations are taken in the context of the generalized thermoelasticity with one relaxation time (L–S theory). The general solutions for any set of boundary conditions are obtained in the physical domain by the Laplace transform techniques. The corresponding asymptotic solutions for a thin plate with finite thickness, subjected to different sudden temperature rises in its two boundaries, are obtained by means of the limit theorem of Laplace transform. In the context of these asymptotic solutions, two specific problems with different boundary conditions have been conducted. The distributions of displacement, temperature and stresses, as well as the propagations, intersections and reflections of two elastic waves, named as thermoelastic wave and thermal wave separately, are obtained and plotted. These results are agreed with the results obtained in the existing literatures.  相似文献   

13.
谷岩  陈文 《固体力学学报》2014,35(3):217-225
奇异边界法是一种新的边界型无网格数值离散方法。该方法使用基本解作为插值基函数,在继承传统边界型方法优点的同时,不需要费时费力的网格划分和奇异积分,数学简单,编程容易,是一个真正的无网格方法。为避免配置点与插值源点重合时带来的基本解源点奇异性,该方法提出了源点强度因子的概念,从而将边界型强格式方法的核心归结为求解源点强度因子。本文首次将该方法应用于求解平面弹性力学问题。数值算例表明,本文算法稳定,效率高,并可达到很高的计算精度。  相似文献   

14.
A simple and accurate mixed finite element-differential quadrature formulation is proposed to study the free vibration of rectangular and skew Mindlin plates with general boundary conditions. In this technique, the original plate problem is reduced to two simple bar (or beam) problems. One bar problem is discretized by the finite element method (FEM) while the other by the differential quadrature method (DQM). The mixed method, in general, combines the geometry flexibility of the FEM and high accuracy and efficiency of the DQM and its implementation is more easier and simpler than the case where the FEM or DQM is fully applied to the problem. Moreover, the proposed formulation is free of the shear locking phenomenon that may be encountered in the conventional shear deformable finite elements. A simple scheme is also presented to exactly implement the mixed natural boundary conditions of the plate problem. The versatility, accuracy and efficiency of the proposed method for free vibration analysis of rectangular and skew Mindlin plates are tested against other solution procedures. It is revealed that the proposed method can produce highly accurate solutions for the natural frequencies of rectangular and skew Mindlin plates with general boundary conditions.  相似文献   

15.
张明  姚振汉  杜庆华 《力学学报》1999,31(5):563-573
提出并研究采用双材料基本解的弹塑性边界元法,得到了内点应力公式中有关奇点塑性应变自由项的完整表达式,并利用非连续边界单元和非连续区域单元解决了当奇点位于界面上时该自由项难于确定,以及计算区域Cauchy主值积分的常塑性应变场法在与界面相连的奇异区域单元上无法实施的困难.采用双材料基本解的弹塑性边界无法针对双材料的结构特点,特别适于分析有关弹塑性双材料界面及界面裂纹问题.  相似文献   

16.
The spatial problems of elasticity are mainly solved in displacements [1, 2], i.e., the Lamé equations are taken as the initial equations. This is related to the lack of general solutions for the system of basic equations of elasticity expressed in stresses. In this connection, a new variational statement of the problem in stresses was developed in [3, 4]; this statement consists in solving six generalized equations of compatibility for six independent components of the stress tensor, while the three equilibrium equations are transferred to the set of boundary conditions. This method is more convenient for the numerical solution of problems in stresses and has been tested when solving various boundary value problems. In the present paper, analyzing the completeness of the Saint-Venant identities and using the Maxwell stress functions, we obtain a new resolving system of three differential equations of strain compatibility for the three desired stress functions φ, ξ, and ψ. This system is an alternative to the three Lamé equilibrium equations for three desired displacement components u, v, w and is simpler in structure. Moreover, both of these systems of resolving equations can be solved by the new recursive-operator method [5, 6]. In contrast to well-known methods for constructing general solutions of linear differential equations and their systems, the solutions obtained by the recursive-operator method are constructed as operator-power series acting on arbitrary analytic functions of real variables (not necessarily harmonic), and the series coefficients are determined from recursive relations (matrix in the case of systems of equations). The arbitrary functions contained in the general solution can be determined directly either from the boundary conditions (the obtained system of inhomogeneous equations with a right-hand side can also be solved by the recursive-operator method [6]) or by choosing them from various classes of analytic functions (elementary, special); a complete set of particular solutions can be obtained in the same function classes, and the coefficients of linear combinations of particular solutions can be determined by the Trefftz method, the least-squares method, and the collocation method.  相似文献   

17.
This paper extends a strong-form meshless boundary collocation method, named the singular boundary method (SBM), for the solution of dynamic poroelastic problems in the frequency domain, which is governed by Biot equations in the form of mixed displacement–pressure formulation. The solutions to problems are represented by using the fundamental solutions of the governing equations in the SBM formulations. To isolate the singularities of the fundamental solutions, the SBM uses the concept of the origin intensity factors to allow the source points to be placed on the physical boundary coinciding with collocation points, which avoids the auxiliary boundary issue of the method of fundamental solutions (MFS). Combining with the origin intensity factors of Laplace and plane strain elastostatic problems, this study derives the SBM formulations for poroelastic problems. Five examples for 2D poroelastic problems are examined to demonstrate the efficiency and accuracy of the present method. In particular, we test the SBM to the multiply connected domain problem, the multilayer problem and the poroelastic problem with corner stress singularities, which are all under varied ranges of frequencies.  相似文献   

18.
弹性地基上各向异性板的静力分析   总被引:1,自引:0,他引:1  
根据弹性地基上各向异性矩形板弯曲挠度的微分方程精确的求得了适用于各种载荷的非齐次解和各类齐次解。其中由三角函数和双曲线函数组成的齐次解能满足四个边为任意边界条件的问题;由代数多项式和双正弦级数组成的齐次解能满足四个角为任意边界条件的问题。通过适当选取建立了满足任意边界条件和任意载荷作用的一般解。解中的积分常数完全由边界条件来决定。以四边简支承受均布载荷和局部分布载荷的对称迭层复合材料方板为例进行了计算和分析。其结果与已有文献结果是一致的。由于集中载荷不能求得作用点的弯矩,故在例题中改用局部分布载荷因而求得了最大弯矩。  相似文献   

19.
The problem of the steady flow of three classes of non-linear fluids of the differential type past a porous plate with uniform suction or injection is studied. The flow which is studied is the counterpart of the classical ‘asymptotic suction’ problem, within the context of the non-Newtonian fluid models. The non-linear differential equations resulting from the balance of momentum and mass, coupled with suitable boundary conditions, are solved numerically either by a finite difference method or by a collocation method with a B-spline function basis. The manner in which the various material parameters affect the structure of the boundary layer is delineated. The issue of paucity of boundary conditions for general non-linear fluids of the differential type, and a method for augmenting the boundary conditions for a certain class of flow problems, is illustrated. A comparison is made of the numerical solutions with the solutions from a regular perturbation approach, as well as a singular perturbation.  相似文献   

20.
A boundary element method is proposed for studying periodic shallow water problems. The numerical model is based on the shallow water equation. The key feature of this method is that the boundary integral equations are derived using the weighted residual method and the fundamental solutions for shallow water wave problems are obtained by solving the simultaneous singular equations. The accuracy of this method is studied for the wave reflection problem in a rectangular tank. As a result of this test, it has been shown that the number of element divisions and the distribution of nodes are significant to the accuracy. For numerical examples of external problems, the wave diffraction problems due to single cylindrical, double cylindrical and plate obstructions are analysed and compared with the exact and other numerical solutions. Relatively accurate solutions are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号