首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 111 毫秒
1.
部分致密油井压后关井一段时间,压裂液返排率普遍低于30%,但是致密油气井产量反而越高,这与压裂液毛细管力渗吸排驱原油有关。然而,致密油储层致密,物性差,渗流机理复杂,尚没有形成统一的自发渗吸模型。本文基于油水两相非活塞式渗流理论,建立了压后闷井期间压裂液在毛细管力作用下自发渗吸进入致密油储层的数学模型,采用数值差分方法进行求解,并分析了相关影响因素。结果显示渗吸体积、渗吸前缘移动距离与渗吸时间的平方根呈线性正相关关系,与经典Handy渗吸理论模型预测结果一致,说明毛细管力自发渗吸模型可靠性较高。数值计算结果表明毛细管水相扩散系数是致密储层自发渗吸速率的主控参数,毛细管水相扩散系数越高,自发渗吸速率越大。毛细管水相扩散系数随着含水饱和度先增加后减小;随着束缚水饱和度、油相和水相端点相对渗透率增加而增加;随着相渗特征指数、油水黏度比和残余油饱和度增加而减小。该研究有助于深入认识致密油储层压裂液渗吸机理,对优化返排制度、提高致密油井产量具有重要意义。  相似文献   

2.
部分致密油井压后关井一段时间,压裂液返排率普遍低于30%,但是致密油气井产量反而越高,这与压裂液毛细管力渗吸排驱原油有关。然而,致密油储层致密,物性差,渗流机理复杂,尚没有形成统一的自发渗吸模型。本文基于油水两相非活塞式渗流理论,建立了压后闷井期间压裂液在毛细管力作用下自发渗吸进入致密油储层的数学模型,采用数值差分方法进行求解,并分析了相关影响因素。结果显示渗吸体积、渗吸前缘移动距离与渗吸时间的平方根呈线性正相关关系,与经典Handy渗吸理论模型预测结果一致,说明毛细管力自发渗吸模型可靠性较高。数值计算结果表明毛细管水相扩散系数是致密储层自发渗吸速率的主控参数,毛细管水相扩散系数越高,自发渗吸速率越大。毛细管水相扩散系数随着含水饱和度先增加后减小;随着束缚水饱和度、油相和水相端点相对渗透率增加而增加;随着相渗特征指数、油水黏度比和残余油饱和度增加而减小。该研究有助于深入认识致密油储层压裂液渗吸机理,对优化返排制度、提高致密油井产量具有重要意义。  相似文献   

3.
动边界双重介质油藏低速非达西渗流试井模型   总被引:3,自引:2,他引:1  
裂缝性油藏中基质岩块的渗透率一般很低,大量岩心测试实验证实在基质岩块内的液体渗流和在一定含水饱和度下的气体渗流将偏离达西渗流,往往出现低速非达西渗流,表现出启动压力梯度以及流体流动边界不断向外扩展等特殊现象。本文充分考虑启动压力梯度与动边界的影响,建立了微可压缩双重介质油藏低速非达西渗流的试井数学模型,对时间和空间变量...  相似文献   

4.
不仅考虑低渗透油藏具有启动压力梯度的渗流特征,还考虑应力敏感地层中介质的变形;发展了Cinco-Ley H.提出的有限导流垂直裂缝井双线性流理论,将流体在垂直裂缝与地层中形成的流动划分为两个区域—垂直裂缝中的线性流区域和变形三重介质低渗透油藏中的非线性流区域;由此建立了变形三重介质低渗透油藏有限导流垂直裂缝井的非线性流...  相似文献   

5.
本文根据并发展了最近在文献[5]中提出的双重孔隙介质中的二相驱替理论,给出了适用于任意注水情形的吸渗方程,提出了裂缝性油层周期注水的计算方法,并据此对之进行了初步的研究。结果表明,周期注水的效果将视油藏的条件而异,即使只考虑到吸渗作用,在一定的油藏条件下,如果适当选择控制方式,周期注水可明显地改善其开发效果。  相似文献   

6.
裂缝性低渗透油藏流固耦合渗流分析   总被引:9,自引:1,他引:8  
在低渗透油田的开发过程中,油藏流体渗流和储层岩土之间存在明显的耦合作用。本文首先研究给出了低渗裂缝性储层孔渗参数的等效方法,然后将渗流力学和岩土力学相结合,给出了低渗透裂缝性储层流固耦合渗流的数学模型,该模型不仅可以反映基质孔渗参数在开发中的变化,而且更能反映裂缝开度变化所引起的渗透率变化,而这对于低渗透裂缝性油田而言十分重要。最后对一实际井网进行了流固耦合油藏数值模拟,给出了开发过程中孔渗参数的变化及其耦合效应对油田开发的影响.  相似文献   

7.
裂缝性低渗透油藏流-固耦合理论与数值模拟   总被引:5,自引:0,他引:5  
根据裂缝性低渗油藏的储层特征,建立适合裂缝性砂岩油藏渗流的等效连续介质模型。将渗流力学与弹塑性力学相结合,建立裂缝性低渗透油藏的流-固耦合渗流数学模型,并给出其数值解.通过数值模拟对一实际井网开发过程中孔隙度、渗透率的变化以及开发指标进行计算,并和刚性模型以及双重介质模型的计算结果进行了分析比较.  相似文献   

8.
致密砂岩逆向渗吸作用距离实验研究   总被引:2,自引:1,他引:1  
中国致密油储量丰富, 但多数致密储层波及效率低, 衰竭开发效果较差. 逆向渗吸是致密油藏注水开发过程中的一种重要的提高采收率途径, 目前许多学者主要针对致密油藏渗吸采收率及其影响因素开展研究, 而对于渗吸作用距离(表征致密油藏渗吸作用范围)研究较少. 本文采用CT在线扫描装置建立了致密岩心逆向渗吸作用距离量化方法, 明确了逆向渗吸的作用范围, 进一步研究了流体压力、含水饱和度、岩心渗透率和表面活性剂对逆向渗吸作用距离的影响, 阐明了逆向渗吸作用距离与渗吸采收率的关系, 为提高致密油藏采收率提供指导. 研究结果表明, 渗透率为0.3 mD的致密岩心逆向渗吸作用距离尺度仅为1.25 ~ 1.625 cm; 5 MPa条件下渗透率为0.302 mD的岩心逆向渗吸作用距离为1.375 cm. 在本实验条件下, 流体压力和初始含水饱和度对致密岩心逆向渗吸作用距离的影响较小, 而渗透率和表面活性剂对致密岩心逆向渗吸作用距离的影响显著, 渗透率为0.784 mD的岩心逆向渗吸作用距离相较于渗透率为0.302 mD的岩心提高2.63倍. 逆向渗吸作用距离是渗吸采收率表征的重要参数, 决定了逆向渗吸作用的波及范围.   相似文献   

9.
石丽娜  同登科 《力学季刊》2006,27(2):206-211
为更好地研究碳酸盐油藏和低渗油的渗流问题,引入渗透率模数,考虑应力敏感地层中介质的变形,介质的双孔隙度、双渗秀率特征,同时考虑井筒储集的影响,建立新的数学模型。渗透率依赖于孔隙压力变化的流动方程是强非线性的,模型采用Douglas—Jones预估-校正法获得了无限大地层及有界封闭地层的数值解,形成了新的理论图版,并利用这些图版对模型中的有关参数进行了敏感性分析。  相似文献   

10.
变形双重介质广义流动分析   总被引:21,自引:0,他引:21  
对于碳酸盐油藏和低渗油藏的渗流问题,传统的研究方法都是假设地层渗透率是常数,这假设,对于地层渗透率是压力敏感的情况,对压力的空间变化和瞬时变化将导致较大的误差。本文研究了应力敏感地层中双重介质渗流问题的压力不稳定响应,不仅考虑了储层的双重介质特征,而且考虑了应力敏感地层中介质的变形,建立了应力敏感地层双重介质的数学模型,渗透率依赖于孔隙压力变化的流动方程是强非线性的,采用Douglas-Jones预估-校正法获得了只有裂缝发生形变定产量生产时无限大地层的数值解及定产量生产岩块与裂隙同时发生形变时无限大地层的数值解,并探讨了变形参数和双重介质参数变化时压力的变化规律,给出几种情况下典型压力曲线图版,这些结果可用于实际试井分析。  相似文献   

11.
The critical and optimum injection rates as well as the critical fracture capillary number for an efficient displacement process are determined based on the experimental and numerical modeling of the displacement of nonwetting phase (oil) by wetting phase (water) in fractured porous media. The efficiency of the process is defined in terms of the nonwetting phase displaced from the system per amount of wetting phase injected and per time. Also, the effects of injection rate on capillary imbibition transfer dominated two-phase flow in fractured porous media are clarified by visualizing the experiments. The results reveal that as the injection rate is increased, fracture pattern begins to become an effective parameter on the matrix saturation distribution. As the rate is lowered, however, the system begins to behave like a homogeneous system showing a frontal displacement regardless the fracture configuration.  相似文献   

12.
During waterflooding of a fractured formation, water may channel through the fracture or interconnected network of fractures, leaving a large portion of oil bearing rock unswept. One remedial practice is injection of a gelling solution into the fracture. Such placement of a gelling mixture is associated with leak-off from the fracture face into the adjoining matrix. Design of a gel treatment needs understanding of the flow of gelling mixture in and around the fracture. This flow is addressed here for Cr(III)–partially hydrolyzed polyacrylamide formulation through experiments and conceptual model. A fractured slab was used to develop a lab-model, where the flow along the fracture and simultaneous leak-off into the matrix can be controlled. Also, the fracture and matrix properties had to be evaluated individually for a meaningful analysis of the displacement of gelling solution. During this displacement, the gelling fluid leaked off from the fracture into the matrix as a front, resulting in a decreasing velocity (and pressure gradient) along the fracture. With pressure in the fracture held constant with time, the leak-off rate decreased as the viscous front progressed into the matrix. The drop in leak-off rate was rapid during the initial phase of displacement. A simple model, based on the injection of a viscous solution into the dual continua, could explain the displacement of Cr(III)–polyacrylamide gelling mixture through the fractured slab. This study rules out any major complication from the immature gelling fluid, e.g., build-up of cake layer on the fracture face. The model, due to its simplicity may become useful for quick sizing of gel treatment, and any regression-based evaluation of fluid properties in a fracture for other applications.  相似文献   

13.
Transport in Porous Media - Countercurrent spontaneous imbibition (SI) is an important flow mechanism for oil recovery in fractured reservoirs during waterflooding. SI plays a key role in the...  相似文献   

14.
Fractures serve as primary conduits having a great impact on the migration of injected fluid into fractured permeable media. Appropriate transport properties such as relative permeability and capillary pressure are essential for successful simulation and prediction of multi-phase flow in such systems. However, the lack of a thorough understanding of the dynamics governing immiscible displacement in fractured media, limits our ability to properly represent their macroscopic transport properties. Previous experimental observations of imbibition front evolution in fractured rocks are examined in the present study using an automated history-matching approach to obtain representative relative permeability and capillary pressure curves. Predicted imbibition front evolution under different flow conditions resulted in an excellent agreement with experimental observations. Sensitivity analyses, in combination with direct experimental observation, allowed exploring the competing effects of relative permeability and capillary pressure on the development of saturation distribution and imbibing front evolution in fractured porous media. Results show that residual saturations are most sensitive to matrix relative permeability to oil, while the ratio of oil and water relative permeability, rock heterogeneity, boundary condition, and matrix–fracture capillary pressure contrast, affect displacement shape, speed, and geometry of the imbibing front.  相似文献   

15.
Water imbibition during the waterflooding process of oil production only sweeps part of the oil present. After water disrupts the oil continuity, most oil blobs are trapped in porous rock by capillary forces. Developing an efficient waterflooding scheme is a difficult task; therefore, an understanding of the oil trapping mechanism in porous rock is necessary from a microscopic viewpoint. The development of microfocused X-ray CT scanner technology enables the three-dimensional visualization of multiphase phenomena in a pore-scale. We scanned packed glass beads filled with a nonwetting phase (NWP) and injected wetting phase (WP) in upward and downward injections to determine the microscopic mechanism of immiscible displacement in porous media and the effects of buoyancy forces. We observed the imbibition phenomena for small capillary numbers to understand the spontaneous imbibition mechanism in oil recovery. This study is one of the first attempts to use a microfocused X-ray CT scanner for observing the imbibition and trapping mechanisms. The trapping mechanism in spontaneous imbibition is determined by the pore configuration causing imbibition speed differences in each channel; these differences can disrupt the oil continuity. Gravity plays an important role in spontaneous imbibition. In upward injection, the WP flows evenly and oil is trapped in single or small clusters of pores. In downward injection, the fingering phenomena determine the amount of trapped oil, which is usually in a network scale. Water breakthrough causes dramatic decrease in the oil extraction rate, resulting in lower oil production efficiency.  相似文献   

16.
配水器的选取会对油田注水效果产生明显影响。为精确地描述注水井注入过程中井底压力和流量的动态响应,本文在传统的内边界井处理模型的基础上建立了考虑水嘴压力损失影响的井处理模型。耦合求解井底压力、流量及地层流动,得到了注入过程中考虑水嘴压力损失影响的井底压力和流量响应情况。以此来分析不同水嘴、渗透率对井底压力、注入量随时间变...  相似文献   

17.
During waterflooding of a fractured formation, water may channel through the fracture or interconnected network of fractures, leaving a large portion of oil bearing rock unswept. One remedial practice is injection of a gelling solution into the fracture. Such placement of a gelling mixture (referred as gelant) is associated with leak-off from the face of the fracture into the adjoining matrix. As the gelant gets more crosslinked, the gelant encounters more resistance in flowing into the porous matrix. This article addresses the build-up of flow resistance as the Cr(III)-partially hydrolyzed polyacrylamide gelant, at various stages of crosslinking flows into the matrix. Flow experiments were conducted at constant injection pressure in unfractured Berea rocks that represent a matrix adjoining a fracture. Before entering the core, gelants underwent post-mixing delays, shorter than their gel time. On continued displacement, flow resistance developed that reduced the flow rate further. More delay, after mixing of gelant hastened, the build-up of resistance to flow and the resistance was contained nearer to the inlet face. Effect of flow over fracture face on the build-up of flow resistance in the matrix was also evaluated by conducting displacement of gelant in two fractured slabs. In one case, a part of the injected fluid came out of the fracture outlet with the rest leaking off into matrix. In the other case, all the fluid that entered into the fracture leaked off into the matrix. Build-up of flow resistances in the matrix for the two cases was compared. A simple conceptual model is presented that could explain the flow of gelant and build-up of resistance in porous rock at constant injection pressure.  相似文献   

18.
On Vaporizing Water Flow in Hot Sub-Vertical Rock Fractures   总被引:1,自引:0,他引:1  
Water injection into unsaturated fractured rock at above-boiling temperatures gives rise to complex fluid flow and heat transfer processes. Examples include water injection into depleted vapor-dominated geothermal reservoirs, and emplacement of heat-generating nuclear wastes in unsaturated fractured rock. We conceptualize fractures as two-dimensional heterogeneous porous media, and use geostatistical techniques to generate synthetic permeability distributions in the fracture plane. Water flow in hot high-angle fractures is simulated numerically, taking into account the combined action of gravity, capillary, and pressure forces, and conductive heat transfer from the wall rocks which gives rise to strong vaporization. In heterogeneous fractures boiling plumes are found to have dendritic shapes, and to be subject to strong lateral flow effects. Fractures with spatially-averaged homogeneous permeabilities tend to give poor approximations for vaporization behavior and liquid migration patterns. Depending on water flow rates, rock temperature, and fracture permeability, liquid water can migrate considerable distances through fractured rock that is at above-boiling temperatures and be only partially vaporized.  相似文献   

19.
Flow modeling in fractured reservoirs is largely confined to the so-called sugar cube model. Here, however, we consider vertically fractured reservoirs, i.e., the situation that the reservoir geometry can be approximated by fractures enclosed columns running from the base rock to the cap rock (aggregated columns). This article deals with the application of the homogenization method to derive an upscaled equation for fractured reservoirs with aggregated columns. It turns out that vertical flow in the columns plays an important role, whereas it can be usually disregarded in the sugar cube model. The vertical flow is caused by coupling of the matrix and fracture pressure along the vertical faces of the columns. We formulate a fully implicit three-dimensional upscaled numerical model. Furthermore, we develop a computationally efficient numerical approach. As found previously for the sugar cube model, the Peclet number, i.e., the ratio between the capillary diffusion time in the matrix and the residence time of the fluids in the fracture, plays an important role. The gravity number plays a secondary role. For low Peclet numbers, the results are sensitive to gravity, but relatively insensitive to the water injection rate, lateral matrix column size, and reservoir geometry, i.e., sugar cube versus aggregated column. At a low Peclet number and sufficiently low gravity number, the effective permeability model gives good results, which agree with the solution of the aggregated column model. However, ECLIPSE simulations (Barenblatt or Warren and Root (BWR) approach) show deviations at low Peclet numbers, but show good agreement at intermediate Peclet numbers. At high Peclet numbers, the results are relatively insensitive to gravity, but sensitive to the other conditions mentioned above. The ECLIPSE simulations and the effective permeability model show large deviations from the aggregated column model at high Peclet numbers. We conclude that at low Peclet numbers, it is advantageous to increase the water injection rate to improve the net present value. However, at high Peclet numbers, increasing the flow rate may lead to uneconomical water cuts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号