首页 | 本学科首页 官方微博 | 高级检索

共查询到20条相似文献，搜索用时 265 毫秒
1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.
A new state vector is presented for symplectic solution to three dimensional couple stress problem. Without relying on the analogy relationship, the dual PDEs of couple stress problem are derived by a new state vector. The duality solution methodology in a new form is thus extended to three dimensional couple stress. A new symplectic orthonormality relationship is proved. The symplectic solution to couple stress theory based a new state vector is more accordant with the custom of classical elasticity and is more convenient to process boundary conditions. A Hamilton mixed energy variational principle is derived by the integral method.  相似文献

16.
The problem on the equilibrium of an inhomogeneous anisotropic elastic layer is considered. The classical statement of the problem in displacements consists of three partial differential equations with variable coefficients for the three displacements and of three boundary conditions posed at each point of the boundary surface. Sometimes, instead of the statement in displacements, it is convenient to use the classical statement of the problem in stresses [1] or the new statement of the problem in stresses proposed by B. E. Pobedrya [2]. In the case of the problem in stresses, it is necessary to find six components of the stress tensor, which are functions of three coordinates. The choice of the statement of the problem depends on the researcher and, of course, on the specific problem. The fact that there are several statements of the problem makes for a wider choice of the method for solving the problem. In the present paper, for a layer with plane boundary surfaces, we propose a new statement of the problem, which, in contrast to the other two statements indicated above, can be called a mixed statement. The problem for a layer in the new statement consists of a system of three partial differential equations for the three components of the displacement vector of the midplane points. The system is coupled with three integro-differential equations for the three longitudinal components of the stress tensor. Thus, in the new statement, just as in the other statements in stresses, one should find six functions. In the new statement, three of these functions (the displacements of the midplane points) are functions of two coordinates, and the other three functions (the longitudinal components of the stress tensor) are functions of three coordinates. It is shown that all equations in the new statement are the Euler equations for the Reissner functional with additional constraints. After the problem is solved in the new statement, three components of the displacement vector and three transverse components of the stress tensor are determined at each point of the layer. The new statement of the problem can be used to construct various engineering theories of plates made of composite materials.  相似文献

17.

18.
Over the past 10 years, spectral analysis has been shown to have the potential to be a reliable means of automating photoelasticity. However, the four methods of analyzing the spectra that have previously been proposed are slow and, in some cases, inaccurate. This paper describes three new methods for spectral analysis based on the maximum entropy method, a genetic algorithm and a memetic algorithm. Thirty-five spectra for known fringe orders were recorded and used in testing the four existing methods and the three new ones. It was found that the new methods were all considerably faster than the existing methods, although less accurate than the best existing method. By combining the maximum entropy method with either the genetic algorithm or the memetic algorithm, spectra could be analyzed up to 30 times as fast as they could with any of the existing methods and with comparable accuracy.  相似文献

19.

20.
In the article a new mesh deformation algorithm based on artificial neural networks is introduced. This method is a point-to-point method, meaning that it does not use connectivity information for calculation of the mesh deformation. Two already known point-to-point methods, based on interpolation techniques, are also presented. In contrast to the two known interpolation methods, the new method does not require a summation over all boundary nodes for one displacement calculation. The consequence of this fact is a shorter computational time of mesh deformation, which is proven by different deformation tests. The quality of the deformed meshes with all three deformation methods was also compared. Finally, the generated and the deformed three-dimensional meshes were used in the computational fluid dynamics numerical analysis of a Francis water turbine. A comparison of the analysis results was made to prove the applicability of the new method in every day computation.  相似文献